Loading...
/* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE754 floating point * double precision internal header file */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include <linux/compiler.h> #include "ieee754int.h" #define assert(expr) ((void)0) #define SP_EBIAS 127 #define SP_EMIN (-126) #define SP_EMAX 127 #define SP_FBITS 23 #define SP_MBITS 23 #define SP_MBIT(x) ((u32)1 << (x)) #define SP_HIDDEN_BIT SP_MBIT(SP_FBITS) #define SP_SIGN_BIT SP_MBIT(31) #define SPSIGN(sp) (sp.sign) #define SPBEXP(sp) (sp.bexp) #define SPMANT(sp) (sp.mant) static inline int ieee754sp_finite(union ieee754sp x) { return SPBEXP(x) != SP_EMAX + 1 + SP_EBIAS; } /* 64 bit right shift with rounding */ #define XSPSRS64(v, rs) \ (((rs) >= 64) ? ((v) != 0) : ((v) >> (rs)) | ((v) << (64-(rs)) != 0)) /* 3bit extended single precision sticky right shift */ #define XSPSRS(v, rs) \ ((rs > (SP_FBITS+3))?1:((v) >> (rs)) | ((v) << (32-(rs)) != 0)) #define XSPSRS1(m) \ ((m >> 1) | (m & 1)) #define SPXSRSX1() \ (xe++, (xm = XSPSRS1(xm))) #define SPXSRSY1() \ (ye++, (ym = XSPSRS1(ym))) /* convert denormal to normalized with extended exponent */ #define SPDNORMx(m,e) \ while ((m >> SP_FBITS) == 0) { m <<= 1; e--; } #define SPDNORMX SPDNORMx(xm, xe) #define SPDNORMY SPDNORMx(ym, ye) #define SPDNORMZ SPDNORMx(zm, ze) static inline union ieee754sp buildsp(int s, int bx, unsigned int m) { union ieee754sp r; assert((s) == 0 || (s) == 1); assert((bx) >= SP_EMIN - 1 + SP_EBIAS && (bx) <= SP_EMAX + 1 + SP_EBIAS); assert(((m) >> SP_FBITS) == 0); r.sign = s; r.bexp = bx; r.mant = m; return r; } extern union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp); extern union ieee754sp ieee754sp_format(int, int, unsigned); |