Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 | // SPDX-License-Identifier: GPL-2.0-only /* * VMware VMCI Driver * * Copyright (C) 2012 VMware, Inc. All rights reserved. */ #include <linux/vmw_vmci_defs.h> #include <linux/vmw_vmci_api.h> #include <linux/moduleparam.h> #include <linux/interrupt.h> #include <linux/highmem.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/processor.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/smp.h> #include <linux/io.h> #include <linux/vmalloc.h> #include "vmci_datagram.h" #include "vmci_doorbell.h" #include "vmci_context.h" #include "vmci_driver.h" #include "vmci_event.h" #define PCI_DEVICE_ID_VMWARE_VMCI 0x0740 #define VMCI_UTIL_NUM_RESOURCES 1 /* * Datagram buffers for DMA send/receive must accommodate at least * a maximum sized datagram and the header. */ #define VMCI_DMA_DG_BUFFER_SIZE (VMCI_MAX_DG_SIZE + PAGE_SIZE) static bool vmci_disable_msi; module_param_named(disable_msi, vmci_disable_msi, bool, 0); MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)"); static bool vmci_disable_msix; module_param_named(disable_msix, vmci_disable_msix, bool, 0); MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)"); static u32 ctx_update_sub_id = VMCI_INVALID_ID; static u32 vm_context_id = VMCI_INVALID_ID; struct vmci_guest_device { struct device *dev; /* PCI device we are attached to */ void __iomem *iobase; void __iomem *mmio_base; bool exclusive_vectors; struct wait_queue_head inout_wq; void *data_buffer; dma_addr_t data_buffer_base; void *tx_buffer; dma_addr_t tx_buffer_base; void *notification_bitmap; dma_addr_t notification_base; }; static bool use_ppn64; bool vmci_use_ppn64(void) { return use_ppn64; } /* vmci_dev singleton device and supporting data*/ struct pci_dev *vmci_pdev; static struct vmci_guest_device *vmci_dev_g; static DEFINE_SPINLOCK(vmci_dev_spinlock); static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0); bool vmci_guest_code_active(void) { return atomic_read(&vmci_num_guest_devices) != 0; } u32 vmci_get_vm_context_id(void) { if (vm_context_id == VMCI_INVALID_ID) { struct vmci_datagram get_cid_msg; get_cid_msg.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID, VMCI_GET_CONTEXT_ID); get_cid_msg.src = VMCI_ANON_SRC_HANDLE; get_cid_msg.payload_size = 0; vm_context_id = vmci_send_datagram(&get_cid_msg); } return vm_context_id; } static unsigned int vmci_read_reg(struct vmci_guest_device *dev, u32 reg) { if (dev->mmio_base != NULL) return readl(dev->mmio_base + reg); return ioread32(dev->iobase + reg); } static void vmci_write_reg(struct vmci_guest_device *dev, u32 val, u32 reg) { if (dev->mmio_base != NULL) writel(val, dev->mmio_base + reg); else iowrite32(val, dev->iobase + reg); } static void vmci_read_data(struct vmci_guest_device *vmci_dev, void *dest, size_t size) { if (vmci_dev->mmio_base == NULL) ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR, dest, size); else { /* * For DMA datagrams, the data_buffer will contain the header on the * first page, followed by the incoming datagram(s) on the following * pages. The header uses an S/G element immediately following the * header on the first page to point to the data area. */ struct vmci_data_in_out_header *buffer_header = vmci_dev->data_buffer; struct vmci_sg_elem *sg_array = (struct vmci_sg_elem *)(buffer_header + 1); size_t buffer_offset = dest - vmci_dev->data_buffer; buffer_header->opcode = 1; buffer_header->size = 1; buffer_header->busy = 0; sg_array[0].addr = vmci_dev->data_buffer_base + buffer_offset; sg_array[0].size = size; vmci_write_reg(vmci_dev, lower_32_bits(vmci_dev->data_buffer_base), VMCI_DATA_IN_LOW_ADDR); wait_event(vmci_dev->inout_wq, buffer_header->busy == 1); } } static int vmci_write_data(struct vmci_guest_device *dev, struct vmci_datagram *dg) { int result; if (dev->mmio_base != NULL) { struct vmci_data_in_out_header *buffer_header = dev->tx_buffer; u8 *dg_out_buffer = (u8 *)(buffer_header + 1); if (VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE) return VMCI_ERROR_INVALID_ARGS; /* * Initialize send buffer with outgoing datagram * and set up header for inline data. Device will * not access buffer asynchronously - only after * the write to VMCI_DATA_OUT_LOW_ADDR. */ memcpy(dg_out_buffer, dg, VMCI_DG_SIZE(dg)); buffer_header->opcode = 0; buffer_header->size = VMCI_DG_SIZE(dg); buffer_header->busy = 1; vmci_write_reg(dev, lower_32_bits(dev->tx_buffer_base), VMCI_DATA_OUT_LOW_ADDR); /* Caller holds a spinlock, so cannot block. */ spin_until_cond(buffer_header->busy == 0); result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR); if (result == VMCI_SUCCESS) result = (int)buffer_header->result; } else { iowrite8_rep(dev->iobase + VMCI_DATA_OUT_ADDR, dg, VMCI_DG_SIZE(dg)); result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR); } return result; } /* * VM to hypervisor call mechanism. We use the standard VMware naming * convention since shared code is calling this function as well. */ int vmci_send_datagram(struct vmci_datagram *dg) { unsigned long flags; int result; /* Check args. */ if (dg == NULL) return VMCI_ERROR_INVALID_ARGS; /* * Need to acquire spinlock on the device because the datagram * data may be spread over multiple pages and the monitor may * interleave device user rpc calls from multiple * VCPUs. Acquiring the spinlock precludes that * possibility. Disabling interrupts to avoid incoming * datagrams during a "rep out" and possibly landing up in * this function. */ spin_lock_irqsave(&vmci_dev_spinlock, flags); if (vmci_dev_g) { vmci_write_data(vmci_dev_g, dg); result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR); } else { result = VMCI_ERROR_UNAVAILABLE; } spin_unlock_irqrestore(&vmci_dev_spinlock, flags); return result; } EXPORT_SYMBOL_GPL(vmci_send_datagram); /* * Gets called with the new context id if updated or resumed. * Context id. */ static void vmci_guest_cid_update(u32 sub_id, const struct vmci_event_data *event_data, void *client_data) { const struct vmci_event_payld_ctx *ev_payload = vmci_event_data_const_payload(event_data); if (sub_id != ctx_update_sub_id) { pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id); return; } if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) { pr_devel("Invalid event data\n"); return; } pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n", vm_context_id, ev_payload->context_id, event_data->event); vm_context_id = ev_payload->context_id; } /* * Verify that the host supports the hypercalls we need. If it does not, * try to find fallback hypercalls and use those instead. Returns 0 if * required hypercalls (or fallback hypercalls) are supported by the host, * an error code otherwise. */ static int vmci_check_host_caps(struct pci_dev *pdev) { bool result; struct vmci_resource_query_msg *msg; u32 msg_size = sizeof(struct vmci_resource_query_hdr) + VMCI_UTIL_NUM_RESOURCES * sizeof(u32); struct vmci_datagram *check_msg; check_msg = kzalloc(msg_size, GFP_KERNEL); if (!check_msg) { dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__); return -ENOMEM; } check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID, VMCI_RESOURCES_QUERY); check_msg->src = VMCI_ANON_SRC_HANDLE; check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE; msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg); msg->num_resources = VMCI_UTIL_NUM_RESOURCES; msg->resources[0] = VMCI_GET_CONTEXT_ID; /* Checks that hyper calls are supported */ result = vmci_send_datagram(check_msg) == 0x01; kfree(check_msg); dev_dbg(&pdev->dev, "%s: Host capability check: %s\n", __func__, result ? "PASSED" : "FAILED"); /* We need the vector. There are no fallbacks. */ return result ? 0 : -ENXIO; } /* * Reads datagrams from the device and dispatches them. For IO port * based access to the device, we always start reading datagrams into * only the first page of the datagram buffer. If the datagrams don't * fit into one page, we use the maximum datagram buffer size for the * remainder of the invocation. This is a simple heuristic for not * penalizing small datagrams. For DMA-based datagrams, we always * use the maximum datagram buffer size, since there is no performance * penalty for doing so. * * This function assumes that it has exclusive access to the data * in register(s) for the duration of the call. */ static void vmci_dispatch_dgs(struct vmci_guest_device *vmci_dev) { u8 *dg_in_buffer = vmci_dev->data_buffer; struct vmci_datagram *dg; size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE; size_t current_dg_in_buffer_size; size_t remaining_bytes; bool is_io_port = vmci_dev->mmio_base == NULL; BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE); if (!is_io_port) { /* For mmio, the first page is used for the header. */ dg_in_buffer += PAGE_SIZE; /* * For DMA-based datagram operations, there is no performance * penalty for reading the maximum buffer size. */ current_dg_in_buffer_size = VMCI_MAX_DG_SIZE; } else { current_dg_in_buffer_size = PAGE_SIZE; } vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size); dg = (struct vmci_datagram *)dg_in_buffer; remaining_bytes = current_dg_in_buffer_size; /* * Read through the buffer until an invalid datagram header is * encountered. The exit condition for datagrams read through * VMCI_DATA_IN_ADDR is a bit more complicated, since a datagram * can start on any page boundary in the buffer. */ while (dg->dst.resource != VMCI_INVALID_ID || (is_io_port && remaining_bytes > PAGE_SIZE)) { unsigned dg_in_size; /* * If using VMCI_DATA_IN_ADDR, skip to the next page * as a datagram can start on any page boundary. */ if (dg->dst.resource == VMCI_INVALID_ID) { dg = (struct vmci_datagram *)roundup( (uintptr_t)dg + 1, PAGE_SIZE); remaining_bytes = (size_t)(dg_in_buffer + current_dg_in_buffer_size - (u8 *)dg); continue; } dg_in_size = VMCI_DG_SIZE_ALIGNED(dg); if (dg_in_size <= dg_in_buffer_size) { int result; /* * If the remaining bytes in the datagram * buffer doesn't contain the complete * datagram, we first make sure we have enough * room for it and then we read the reminder * of the datagram and possibly any following * datagrams. */ if (dg_in_size > remaining_bytes) { if (remaining_bytes != current_dg_in_buffer_size) { /* * We move the partial * datagram to the front and * read the reminder of the * datagram and possibly * following calls into the * following bytes. */ memmove(dg_in_buffer, dg_in_buffer + current_dg_in_buffer_size - remaining_bytes, remaining_bytes); dg = (struct vmci_datagram *) dg_in_buffer; } if (current_dg_in_buffer_size != dg_in_buffer_size) current_dg_in_buffer_size = dg_in_buffer_size; vmci_read_data(vmci_dev, dg_in_buffer + remaining_bytes, current_dg_in_buffer_size - remaining_bytes); } /* * We special case event datagrams from the * hypervisor. */ if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID && dg->dst.resource == VMCI_EVENT_HANDLER) { result = vmci_event_dispatch(dg); } else { result = vmci_datagram_invoke_guest_handler(dg); } if (result < VMCI_SUCCESS) dev_dbg(vmci_dev->dev, "Datagram with resource (ID=0x%x) failed (err=%d)\n", dg->dst.resource, result); /* On to the next datagram. */ dg = (struct vmci_datagram *)((u8 *)dg + dg_in_size); } else { size_t bytes_to_skip; /* * Datagram doesn't fit in datagram buffer of maximal * size. We drop it. */ dev_dbg(vmci_dev->dev, "Failed to receive datagram (size=%u bytes)\n", dg_in_size); bytes_to_skip = dg_in_size - remaining_bytes; if (current_dg_in_buffer_size != dg_in_buffer_size) current_dg_in_buffer_size = dg_in_buffer_size; for (;;) { vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size); if (bytes_to_skip <= current_dg_in_buffer_size) break; bytes_to_skip -= current_dg_in_buffer_size; } dg = (struct vmci_datagram *)(dg_in_buffer + bytes_to_skip); } remaining_bytes = (size_t) (dg_in_buffer + current_dg_in_buffer_size - (u8 *)dg); if (remaining_bytes < VMCI_DG_HEADERSIZE) { /* Get the next batch of datagrams. */ vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size); dg = (struct vmci_datagram *)dg_in_buffer; remaining_bytes = current_dg_in_buffer_size; } } } /* * Scans the notification bitmap for raised flags, clears them * and handles the notifications. */ static void vmci_process_bitmap(struct vmci_guest_device *dev) { if (!dev->notification_bitmap) { dev_dbg(dev->dev, "No bitmap present in %s\n", __func__); return; } vmci_dbell_scan_notification_entries(dev->notification_bitmap); } /* * Interrupt handler for legacy or MSI interrupt, or for first MSI-X * interrupt (vector VMCI_INTR_DATAGRAM). */ static irqreturn_t vmci_interrupt(int irq, void *_dev) { struct vmci_guest_device *dev = _dev; /* * If we are using MSI-X with exclusive vectors then we simply call * vmci_dispatch_dgs(), since we know the interrupt was meant for us. * Otherwise we must read the ICR to determine what to do. */ if (dev->exclusive_vectors) { vmci_dispatch_dgs(dev); } else { unsigned int icr; /* Acknowledge interrupt and determine what needs doing. */ icr = vmci_read_reg(dev, VMCI_ICR_ADDR); if (icr == 0 || icr == ~0) return IRQ_NONE; if (icr & VMCI_ICR_DATAGRAM) { vmci_dispatch_dgs(dev); icr &= ~VMCI_ICR_DATAGRAM; } if (icr & VMCI_ICR_NOTIFICATION) { vmci_process_bitmap(dev); icr &= ~VMCI_ICR_NOTIFICATION; } if (icr & VMCI_ICR_DMA_DATAGRAM) { wake_up_all(&dev->inout_wq); icr &= ~VMCI_ICR_DMA_DATAGRAM; } if (icr != 0) dev_warn(dev->dev, "Ignoring unknown interrupt cause (%d)\n", icr); } return IRQ_HANDLED; } /* * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION, * which is for the notification bitmap. Will only get called if we are * using MSI-X with exclusive vectors. */ static irqreturn_t vmci_interrupt_bm(int irq, void *_dev) { struct vmci_guest_device *dev = _dev; /* For MSI-X we can just assume it was meant for us. */ vmci_process_bitmap(dev); return IRQ_HANDLED; } /* * Interrupt handler for MSI-X interrupt vector VMCI_INTR_DMA_DATAGRAM, * which is for the completion of a DMA datagram send or receive operation. * Will only get called if we are using MSI-X with exclusive vectors. */ static irqreturn_t vmci_interrupt_dma_datagram(int irq, void *_dev) { struct vmci_guest_device *dev = _dev; wake_up_all(&dev->inout_wq); return IRQ_HANDLED; } static void vmci_free_dg_buffers(struct vmci_guest_device *vmci_dev) { if (vmci_dev->mmio_base != NULL) { if (vmci_dev->tx_buffer != NULL) dma_free_coherent(vmci_dev->dev, VMCI_DMA_DG_BUFFER_SIZE, vmci_dev->tx_buffer, vmci_dev->tx_buffer_base); if (vmci_dev->data_buffer != NULL) dma_free_coherent(vmci_dev->dev, VMCI_DMA_DG_BUFFER_SIZE, vmci_dev->data_buffer, vmci_dev->data_buffer_base); } else { vfree(vmci_dev->data_buffer); } } /* * Most of the initialization at module load time is done here. */ static int vmci_guest_probe_device(struct pci_dev *pdev, const struct pci_device_id *id) { struct vmci_guest_device *vmci_dev; void __iomem *iobase = NULL; void __iomem *mmio_base = NULL; unsigned int num_irq_vectors; unsigned int capabilities; unsigned int caps_in_use; unsigned long cmd; int vmci_err; int error; dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n"); error = pcim_enable_device(pdev); if (error) { dev_err(&pdev->dev, "Failed to enable VMCI device: %d\n", error); return error; } /* * The VMCI device with mmio access to registers requests 256KB * for BAR1. If present, driver will use new VMCI device * functionality for register access and datagram send/recv. */ if (pci_resource_len(pdev, 1) == VMCI_WITH_MMIO_ACCESS_BAR_SIZE) { dev_info(&pdev->dev, "MMIO register access is available\n"); mmio_base = pci_iomap_range(pdev, 1, VMCI_MMIO_ACCESS_OFFSET, VMCI_MMIO_ACCESS_SIZE); /* If the map fails, we fall back to IOIO access. */ if (!mmio_base) dev_warn(&pdev->dev, "Failed to map MMIO register access\n"); } if (!mmio_base) { if (IS_ENABLED(CONFIG_ARM64)) { dev_err(&pdev->dev, "MMIO base is invalid\n"); return -ENXIO; } error = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME); if (error) { dev_err(&pdev->dev, "Failed to reserve/map IO regions\n"); return error; } iobase = pcim_iomap_table(pdev)[0]; } vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL); if (!vmci_dev) { dev_err(&pdev->dev, "Can't allocate memory for VMCI device\n"); return -ENOMEM; } vmci_dev->dev = &pdev->dev; vmci_dev->exclusive_vectors = false; vmci_dev->iobase = iobase; vmci_dev->mmio_base = mmio_base; init_waitqueue_head(&vmci_dev->inout_wq); if (mmio_base != NULL) { vmci_dev->tx_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE, &vmci_dev->tx_buffer_base, GFP_KERNEL); if (!vmci_dev->tx_buffer) { dev_err(&pdev->dev, "Can't allocate memory for datagram tx buffer\n"); return -ENOMEM; } vmci_dev->data_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE, &vmci_dev->data_buffer_base, GFP_KERNEL); } else { vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE); } if (!vmci_dev->data_buffer) { dev_err(&pdev->dev, "Can't allocate memory for datagram buffer\n"); error = -ENOMEM; goto err_free_data_buffers; } pci_set_master(pdev); /* To enable queue_pair functionality. */ /* * Verify that the VMCI Device supports the capabilities that * we need. If the device is missing capabilities that we would * like to use, check for fallback capabilities and use those * instead (so we can run a new VM on old hosts). Fail the load if * a required capability is missing and there is no fallback. * * Right now, we need datagrams. There are no fallbacks. */ capabilities = vmci_read_reg(vmci_dev, VMCI_CAPS_ADDR); if (!(capabilities & VMCI_CAPS_DATAGRAM)) { dev_err(&pdev->dev, "Device does not support datagrams\n"); error = -ENXIO; goto err_free_data_buffers; } caps_in_use = VMCI_CAPS_DATAGRAM; /* * Use 64-bit PPNs if the device supports. * * There is no check for the return value of dma_set_mask_and_coherent * since this driver can handle the default mask values if * dma_set_mask_and_coherent fails. */ if (capabilities & VMCI_CAPS_PPN64) { dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); use_ppn64 = true; caps_in_use |= VMCI_CAPS_PPN64; } else { dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44)); use_ppn64 = false; } /* * If the hardware supports notifications, we will use that as * well. */ if (capabilities & VMCI_CAPS_NOTIFICATIONS) { vmci_dev->notification_bitmap = dma_alloc_coherent( &pdev->dev, PAGE_SIZE, &vmci_dev->notification_base, GFP_KERNEL); if (!vmci_dev->notification_bitmap) dev_warn(&pdev->dev, "Unable to allocate notification bitmap\n"); else caps_in_use |= VMCI_CAPS_NOTIFICATIONS; } if (mmio_base != NULL) { if (capabilities & VMCI_CAPS_DMA_DATAGRAM) { caps_in_use |= VMCI_CAPS_DMA_DATAGRAM; } else { dev_err(&pdev->dev, "Missing capability: VMCI_CAPS_DMA_DATAGRAM\n"); error = -ENXIO; goto err_free_notification_bitmap; } } dev_info(&pdev->dev, "Using capabilities 0x%x\n", caps_in_use); /* Let the host know which capabilities we intend to use. */ vmci_write_reg(vmci_dev, caps_in_use, VMCI_CAPS_ADDR); if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) { /* Let the device know the size for pages passed down. */ vmci_write_reg(vmci_dev, PAGE_SHIFT, VMCI_GUEST_PAGE_SHIFT); /* Configure the high order parts of the data in/out buffers. */ vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->data_buffer_base), VMCI_DATA_IN_HIGH_ADDR); vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->tx_buffer_base), VMCI_DATA_OUT_HIGH_ADDR); } /* Set up global device so that we can start sending datagrams */ spin_lock_irq(&vmci_dev_spinlock); vmci_dev_g = vmci_dev; vmci_pdev = pdev; spin_unlock_irq(&vmci_dev_spinlock); /* * Register notification bitmap with device if that capability is * used. */ if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) { unsigned long bitmap_ppn = vmci_dev->notification_base >> PAGE_SHIFT; if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) { dev_warn(&pdev->dev, "VMCI device unable to register notification bitmap with PPN 0x%lx\n", bitmap_ppn); error = -ENXIO; goto err_remove_vmci_dev_g; } } /* Check host capabilities. */ error = vmci_check_host_caps(pdev); if (error) goto err_remove_vmci_dev_g; /* Enable device. */ /* * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can * update the internal context id when needed. */ vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE, vmci_guest_cid_update, NULL, &ctx_update_sub_id); if (vmci_err < VMCI_SUCCESS) dev_warn(&pdev->dev, "Failed to subscribe to event (type=%d): %d\n", VMCI_EVENT_CTX_ID_UPDATE, vmci_err); /* * Enable interrupts. Try MSI-X first, then MSI, and then fallback on * legacy interrupts. */ if (vmci_dev->mmio_base != NULL) num_irq_vectors = VMCI_MAX_INTRS; else num_irq_vectors = VMCI_MAX_INTRS_NOTIFICATION; error = pci_alloc_irq_vectors(pdev, num_irq_vectors, num_irq_vectors, PCI_IRQ_MSIX); if (error < 0) { error = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY); if (error < 0) goto err_unsubscribe_event; } else { vmci_dev->exclusive_vectors = true; } /* * Request IRQ for legacy or MSI interrupts, or for first * MSI-X vector. */ error = request_threaded_irq(pci_irq_vector(pdev, 0), NULL, vmci_interrupt, IRQF_SHARED, KBUILD_MODNAME, vmci_dev); if (error) { dev_err(&pdev->dev, "Irq %u in use: %d\n", pci_irq_vector(pdev, 0), error); goto err_disable_msi; } /* * For MSI-X with exclusive vectors we need to request an * interrupt for each vector so that we get a separate * interrupt handler routine. This allows us to distinguish * between the vectors. */ if (vmci_dev->exclusive_vectors) { error = request_threaded_irq(pci_irq_vector(pdev, 1), NULL, vmci_interrupt_bm, 0, KBUILD_MODNAME, vmci_dev); if (error) { dev_err(&pdev->dev, "Failed to allocate irq %u: %d\n", pci_irq_vector(pdev, 1), error); goto err_free_irq; } if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) { error = request_threaded_irq(pci_irq_vector(pdev, 2), NULL, vmci_interrupt_dma_datagram, 0, KBUILD_MODNAME, vmci_dev); if (error) { dev_err(&pdev->dev, "Failed to allocate irq %u: %d\n", pci_irq_vector(pdev, 2), error); goto err_free_bm_irq; } } } dev_dbg(&pdev->dev, "Registered device\n"); atomic_inc(&vmci_num_guest_devices); /* Enable specific interrupt bits. */ cmd = VMCI_IMR_DATAGRAM; if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) cmd |= VMCI_IMR_NOTIFICATION; if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) cmd |= VMCI_IMR_DMA_DATAGRAM; vmci_write_reg(vmci_dev, cmd, VMCI_IMR_ADDR); /* Enable interrupts. */ vmci_write_reg(vmci_dev, VMCI_CONTROL_INT_ENABLE, VMCI_CONTROL_ADDR); pci_set_drvdata(pdev, vmci_dev); vmci_call_vsock_callback(false); return 0; err_free_bm_irq: if (vmci_dev->exclusive_vectors) free_irq(pci_irq_vector(pdev, 1), vmci_dev); err_free_irq: free_irq(pci_irq_vector(pdev, 0), vmci_dev); err_disable_msi: pci_free_irq_vectors(pdev); err_unsubscribe_event: vmci_err = vmci_event_unsubscribe(ctx_update_sub_id); if (vmci_err < VMCI_SUCCESS) dev_warn(&pdev->dev, "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n", VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err); err_remove_vmci_dev_g: spin_lock_irq(&vmci_dev_spinlock); vmci_pdev = NULL; vmci_dev_g = NULL; spin_unlock_irq(&vmci_dev_spinlock); err_free_notification_bitmap: if (vmci_dev->notification_bitmap) { vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR); dma_free_coherent(&pdev->dev, PAGE_SIZE, vmci_dev->notification_bitmap, vmci_dev->notification_base); } err_free_data_buffers: vmci_free_dg_buffers(vmci_dev); /* The rest are managed resources and will be freed by PCI core */ return error; } static void vmci_guest_remove_device(struct pci_dev *pdev) { struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev); int vmci_err; dev_dbg(&pdev->dev, "Removing device\n"); atomic_dec(&vmci_num_guest_devices); vmci_qp_guest_endpoints_exit(); vmci_err = vmci_event_unsubscribe(ctx_update_sub_id); if (vmci_err < VMCI_SUCCESS) dev_warn(&pdev->dev, "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n", VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err); spin_lock_irq(&vmci_dev_spinlock); vmci_dev_g = NULL; vmci_pdev = NULL; spin_unlock_irq(&vmci_dev_spinlock); dev_dbg(&pdev->dev, "Resetting vmci device\n"); vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR); /* * Free IRQ and then disable MSI/MSI-X as appropriate. For * MSI-X, we might have multiple vectors, each with their own * IRQ, which we must free too. */ if (vmci_dev->exclusive_vectors) { free_irq(pci_irq_vector(pdev, 1), vmci_dev); if (vmci_dev->mmio_base != NULL) free_irq(pci_irq_vector(pdev, 2), vmci_dev); } free_irq(pci_irq_vector(pdev, 0), vmci_dev); pci_free_irq_vectors(pdev); if (vmci_dev->notification_bitmap) { /* * The device reset above cleared the bitmap state of the * device, so we can safely free it here. */ dma_free_coherent(&pdev->dev, PAGE_SIZE, vmci_dev->notification_bitmap, vmci_dev->notification_base); } vmci_free_dg_buffers(vmci_dev); if (vmci_dev->mmio_base != NULL) pci_iounmap(pdev, vmci_dev->mmio_base); /* The rest are managed resources and will be freed by PCI core */ } static const struct pci_device_id vmci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), }, { 0 }, }; MODULE_DEVICE_TABLE(pci, vmci_ids); static struct pci_driver vmci_guest_driver = { .name = KBUILD_MODNAME, .id_table = vmci_ids, .probe = vmci_guest_probe_device, .remove = vmci_guest_remove_device, }; int __init vmci_guest_init(void) { return pci_register_driver(&vmci_guest_driver); } void __exit vmci_guest_exit(void) { pci_unregister_driver(&vmci_guest_driver); } |