// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2019-2021, Intel Corporation. */
#include "ice.h"
#include "ice_tc_lib.h"
#include "ice_fltr.h"
#include "ice_lib.h"
#include "ice_protocol_type.h"
#define ICE_TC_METADATA_LKUP_IDX 0
/**
* ice_tc_count_lkups - determine lookup count for switch filter
* @flags: TC-flower flags
* @headers: Pointer to TC flower filter header structure
* @fltr: Pointer to outer TC filter structure
*
* Determine lookup count based on TC flower input for switch filter.
*/
static int
ice_tc_count_lkups(u32 flags, struct ice_tc_flower_lyr_2_4_hdrs *headers,
struct ice_tc_flower_fltr *fltr)
{
int lkups_cnt = 1; /* 0th lookup is metadata */
/* Always add metadata as the 0th lookup. Included elements:
* - Direction flag (always present)
* - ICE_TC_FLWR_FIELD_VLAN_TPID (present if specified)
* - Tunnel flag (present if tunnel)
*/
if (flags & ICE_TC_FLWR_FIELD_TENANT_ID)
lkups_cnt++;
if (flags & ICE_TC_FLWR_FIELD_ENC_DST_MAC)
lkups_cnt++;
if (flags & ICE_TC_FLWR_FIELD_ENC_OPTS)
lkups_cnt++;
if (flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV4 |
ICE_TC_FLWR_FIELD_ENC_DEST_IPV4 |
ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
ICE_TC_FLWR_FIELD_ENC_DEST_IPV6))
lkups_cnt++;
if (flags & (ICE_TC_FLWR_FIELD_ENC_IP_TOS |
ICE_TC_FLWR_FIELD_ENC_IP_TTL))
lkups_cnt++;
if (flags & ICE_TC_FLWR_FIELD_ENC_DEST_L4_PORT)
lkups_cnt++;
if (flags & ICE_TC_FLWR_FIELD_ETH_TYPE_ID)
lkups_cnt++;
/* are MAC fields specified? */
if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | ICE_TC_FLWR_FIELD_SRC_MAC))
lkups_cnt++;
/* is VLAN specified? */
if (flags & (ICE_TC_FLWR_FIELD_VLAN | ICE_TC_FLWR_FIELD_VLAN_PRIO))
lkups_cnt++;
/* is CVLAN specified? */
if (flags & (ICE_TC_FLWR_FIELD_CVLAN | ICE_TC_FLWR_FIELD_CVLAN_PRIO))
lkups_cnt++;
/* are PPPoE options specified? */
if (flags & (ICE_TC_FLWR_FIELD_PPPOE_SESSID |
ICE_TC_FLWR_FIELD_PPP_PROTO))
lkups_cnt++;
/* are IPv[4|6] fields specified? */
if (flags & (ICE_TC_FLWR_FIELD_DEST_IPV4 | ICE_TC_FLWR_FIELD_SRC_IPV4 |
ICE_TC_FLWR_FIELD_DEST_IPV6 | ICE_TC_FLWR_FIELD_SRC_IPV6))
lkups_cnt++;
if (flags & (ICE_TC_FLWR_FIELD_IP_TOS | ICE_TC_FLWR_FIELD_IP_TTL))
lkups_cnt++;
/* are L2TPv3 options specified? */
if (flags & ICE_TC_FLWR_FIELD_L2TPV3_SESSID)
lkups_cnt++;
/* is L4 (TCP/UDP/any other L4 protocol fields) specified? */
if (flags & (ICE_TC_FLWR_FIELD_DEST_L4_PORT |
ICE_TC_FLWR_FIELD_SRC_L4_PORT))
lkups_cnt++;
return lkups_cnt;
}
static enum ice_protocol_type ice_proto_type_from_mac(bool inner)
{
return inner ? ICE_MAC_IL : ICE_MAC_OFOS;
}
static enum ice_protocol_type ice_proto_type_from_etype(bool inner)
{
return inner ? ICE_ETYPE_IL : ICE_ETYPE_OL;
}
static enum ice_protocol_type ice_proto_type_from_ipv4(bool inner)
{
return inner ? ICE_IPV4_IL : ICE_IPV4_OFOS;
}
static enum ice_protocol_type ice_proto_type_from_ipv6(bool inner)
{
return inner ? ICE_IPV6_IL : ICE_IPV6_OFOS;
}
static enum ice_protocol_type ice_proto_type_from_l4_port(u16 ip_proto)
{
switch (ip_proto) {
case IPPROTO_TCP:
return ICE_TCP_IL;
case IPPROTO_UDP:
return ICE_UDP_ILOS;
}
return 0;
}
static enum ice_protocol_type
ice_proto_type_from_tunnel(enum ice_tunnel_type type)
{
switch (type) {
case TNL_VXLAN:
return ICE_VXLAN;
case TNL_GENEVE:
return ICE_GENEVE;
case TNL_GRETAP:
return ICE_NVGRE;
case TNL_GTPU:
/* NO_PAY profiles will not work with GTP-U */
return ICE_GTP;
case TNL_GTPC:
return ICE_GTP_NO_PAY;
default:
return 0;
}
}
static enum ice_sw_tunnel_type
ice_sw_type_from_tunnel(enum ice_tunnel_type type)
{
switch (type) {
case TNL_VXLAN:
return ICE_SW_TUN_VXLAN;
case TNL_GENEVE:
return ICE_SW_TUN_GENEVE;
case TNL_GRETAP:
return ICE_SW_TUN_NVGRE;
case TNL_GTPU:
return ICE_SW_TUN_GTPU;
case TNL_GTPC:
return ICE_SW_TUN_GTPC;
default:
return ICE_NON_TUN;
}
}
static u16 ice_check_supported_vlan_tpid(u16 vlan_tpid)
{
switch (vlan_tpid) {
case ETH_P_8021Q:
case ETH_P_8021AD:
case ETH_P_QINQ1:
return vlan_tpid;
default:
return 0;
}
}
static int
ice_tc_fill_tunnel_outer(u32 flags, struct ice_tc_flower_fltr *fltr,
struct ice_adv_lkup_elem *list, int i)
{
struct ice_tc_flower_lyr_2_4_hdrs *hdr = &fltr->outer_headers;
if (flags & ICE_TC_FLWR_FIELD_TENANT_ID) {
u32 tenant_id;
list[i].type = ice_proto_type_from_tunnel(fltr->tunnel_type);
switch (fltr->tunnel_type) {
case TNL_VXLAN:
case TNL_GENEVE:
tenant_id = be32_to_cpu(fltr->tenant_id) << 8;
list[i].h_u.tnl_hdr.vni = cpu_to_be32(tenant_id);
memcpy(&list[i].m_u.tnl_hdr.vni, "\xff\xff\xff\x00", 4);
i++;
break;
case TNL_GRETAP:
list[i].h_u.nvgre_hdr.tni_flow = fltr->tenant_id;
memcpy(&list[i].m_u.nvgre_hdr.tni_flow,
"\xff\xff\xff\xff", 4);
i++;
break;
case TNL_GTPC:
case TNL_GTPU:
list[i].h_u.gtp_hdr.teid = fltr->tenant_id;
memcpy(&list[i].m_u.gtp_hdr.teid,
"\xff\xff\xff\xff", 4);
i++;
break;
default:
break;
}
}
if (flags & ICE_TC_FLWR_FIELD_ENC_DST_MAC) {
list[i].type = ice_proto_type_from_mac(false);
ether_addr_copy(list[i].h_u.eth_hdr.dst_addr,
hdr->l2_key.dst_mac);
ether_addr_copy(list[i].m_u.eth_hdr.dst_addr,
hdr->l2_mask.dst_mac);
i++;
}
if (flags & ICE_TC_FLWR_FIELD_ENC_OPTS &&
(fltr->tunnel_type == TNL_GTPU || fltr->tunnel_type == TNL_GTPC)) {
list[i].type = ice_proto_type_from_tunnel(fltr->tunnel_type);
if (fltr->gtp_pdu_info_masks.pdu_type) {
list[i].h_u.gtp_hdr.pdu_type =
fltr->gtp_pdu_info_keys.pdu_type << 4;
memcpy(&list[i].m_u.gtp_hdr.pdu_type, "\xf0", 1);
}
if (fltr->gtp_pdu_info_masks.qfi) {
list[i].h_u.gtp_hdr.qfi = fltr->gtp_pdu_info_keys.qfi;
memcpy(&list[i].m_u.gtp_hdr.qfi, "\x3f", 1);
}
i++;
}
if (flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV4 |
ICE_TC_FLWR_FIELD_ENC_DEST_IPV4)) {
list[i].type = ice_proto_type_from_ipv4(false);
if (flags & ICE_TC_FLWR_FIELD_ENC_SRC_IPV4) {
list[i].h_u.ipv4_hdr.src_addr = hdr->l3_key.src_ipv4;
list[i].m_u.ipv4_hdr.src_addr = hdr->l3_mask.src_ipv4;
}
if (flags & ICE_TC_FLWR_FIELD_ENC_DEST_IPV4) {
list[i].h_u.ipv4_hdr.dst_addr = hdr->l3_key.dst_ipv4;
list[i].m_u.ipv4_hdr.dst_addr = hdr->l3_mask.dst_ipv4;
}
i++;
}
if (flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
ICE_TC_FLWR_FIELD_ENC_DEST_IPV6)) {
list[i].type = ice_proto_type_from_ipv6(false);
if (flags & ICE_TC_FLWR_FIELD_ENC_SRC_IPV6) {
memcpy(&list[i].h_u.ipv6_hdr.src_addr,
&hdr->l3_key.src_ipv6_addr,
sizeof(hdr->l3_key.src_ipv6_addr));
memcpy(&list[i].m_u.ipv6_hdr.src_addr,
&hdr->l3_mask.src_ipv6_addr,
sizeof(hdr->l3_mask.src_ipv6_addr));
}
if (flags & ICE_TC_FLWR_FIELD_ENC_DEST_IPV6) {
memcpy(&list[i].h_u.ipv6_hdr.dst_addr,
&hdr->l3_key.dst_ipv6_addr,
sizeof(hdr->l3_key.dst_ipv6_addr));
memcpy(&list[i].m_u.ipv6_hdr.dst_addr,
&hdr->l3_mask.dst_ipv6_addr,
sizeof(hdr->l3_mask.dst_ipv6_addr));
}
i++;
}
if (fltr->inner_headers.l2_key.n_proto == htons(ETH_P_IP) &&
(flags & (ICE_TC_FLWR_FIELD_ENC_IP_TOS |
ICE_TC_FLWR_FIELD_ENC_IP_TTL))) {
list[i].type = ice_proto_type_from_ipv4(false);
if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TOS) {
list[i].h_u.ipv4_hdr.tos = hdr->l3_key.tos;
list[i].m_u.ipv4_hdr.tos = hdr->l3_mask.tos;
}
if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TTL) {
list[i].h_u.ipv4_hdr.time_to_live = hdr->l3_key.ttl;
list[i].m_u.ipv4_hdr.time_to_live = hdr->l3_mask.ttl;
}
i++;
}
if (fltr->inner_headers.l2_key.n_proto == htons(ETH_P_IPV6) &&
(flags & (ICE_TC_FLWR_FIELD_ENC_IP_TOS |
ICE_TC_FLWR_FIELD_ENC_IP_TTL))) {
struct ice_ipv6_hdr *hdr_h, *hdr_m;
hdr_h = &list[i].h_u.ipv6_hdr;
hdr_m = &list[i].m_u.ipv6_hdr;
list[i].type = ice_proto_type_from_ipv6(false);
if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TOS) {
be32p_replace_bits(&hdr_h->be_ver_tc_flow,
hdr->l3_key.tos,
ICE_IPV6_HDR_TC_MASK);
be32p_replace_bits(&hdr_m->be_ver_tc_flow,
hdr->l3_mask.tos,
ICE_IPV6_HDR_TC_MASK);
}
if (flags & ICE_TC_FLWR_FIELD_ENC_IP_TTL) {
hdr_h->hop_limit = hdr->l3_key.ttl;
hdr_m->hop_limit = hdr->l3_mask.ttl;
}
i++;
}
if ((flags & ICE_TC_FLWR_FIELD_ENC_DEST_L4_PORT) &&
hdr->l3_key.ip_proto == IPPROTO_UDP) {
list[i].type = ICE_UDP_OF;
list[i].h_u.l4_hdr.dst_port = hdr->l4_key.dst_port;
list[i].m_u.l4_hdr.dst_port = hdr->l4_mask.dst_port;
i++;
}
/* always fill matching on tunneled packets in metadata */
ice_rule_add_tunnel_metadata(&list[ICE_TC_METADATA_LKUP_IDX]);
return i;
}
/**
* ice_tc_fill_rules - fill filter rules based on TC fltr
* @hw: pointer to HW structure
* @flags: tc flower field flags
* @tc_fltr: pointer to TC flower filter
* @list: list of advance rule elements
* @rule_info: pointer to information about rule
* @l4_proto: pointer to information such as L4 proto type
*
* Fill ice_adv_lkup_elem list based on TC flower flags and
* TC flower headers. This list should be used to add
* advance filter in hardware.
*/
static int
ice_tc_fill_rules(struct ice_hw *hw, u32 flags,
struct ice_tc_flower_fltr *tc_fltr,
struct ice_adv_lkup_elem *list,
struct ice_adv_rule_info *rule_info,
u16 *l4_proto)
{
struct ice_tc_flower_lyr_2_4_hdrs *headers = &tc_fltr->outer_headers;
bool inner = false;
u16 vlan_tpid = 0;
int i = 1; /* 0th lookup is metadata */
rule_info->vlan_type = vlan_tpid;
/* Always add direction metadata */
ice_rule_add_direction_metadata(&list[ICE_TC_METADATA_LKUP_IDX]);
rule_info->tun_type = ice_sw_type_from_tunnel(tc_fltr->tunnel_type);
if (tc_fltr->tunnel_type != TNL_LAST) {
i = ice_tc_fill_tunnel_outer(flags, tc_fltr, list, i);
headers = &tc_fltr->inner_headers;
inner = true;
}
if (flags & ICE_TC_FLWR_FIELD_ETH_TYPE_ID) {
list[i].type = ice_proto_type_from_etype(inner);
list[i].h_u.ethertype.ethtype_id = headers->l2_key.n_proto;
list[i].m_u.ethertype.ethtype_id = headers->l2_mask.n_proto;
i++;
}
if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
ICE_TC_FLWR_FIELD_SRC_MAC)) {
struct ice_tc_l2_hdr *l2_key, *l2_mask;
l2_key = &headers->l2_key;
l2_mask = &headers->l2_mask;
list[i].type = ice_proto_type_from_mac(inner);
if (flags & ICE_TC_FLWR_FIELD_DST_MAC) {
ether_addr_copy(list[i].h_u.eth_hdr.dst_addr,
l2_key->dst_mac);
ether_addr_copy(list[i].m_u.eth_hdr.dst_addr,
l2_mask->dst_mac);
}
if (flags & ICE_TC_FLWR_FIELD_SRC_MAC) {
ether_addr_copy(list[i].h_u.eth_hdr.src_addr,
l2_key->src_mac);
ether_addr_copy(list[i].m_u.eth_hdr.src_addr,
l2_mask->src_mac);
}
i++;
}
/* copy VLAN info */
if (flags & (ICE_TC_FLWR_FIELD_VLAN | ICE_TC_FLWR_FIELD_VLAN_PRIO)) {
if (flags & ICE_TC_FLWR_FIELD_CVLAN)
list[i].type = ICE_VLAN_EX;
else
list[i].type = ICE_VLAN_OFOS;
if (flags & ICE_TC_FLWR_FIELD_VLAN) {
list[i].h_u.vlan_hdr.vlan = headers->vlan_hdr.vlan_id;
list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0x0FFF);
}
if (flags & ICE_TC_FLWR_FIELD_VLAN_PRIO) {
if (flags & ICE_TC_FLWR_FIELD_VLAN) {
list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xEFFF);
} else {
list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xE000);
list[i].h_u.vlan_hdr.vlan = 0;
}
list[i].h_u.vlan_hdr.vlan |=
headers->vlan_hdr.vlan_prio;
}
i++;
}
if (flags & ICE_TC_FLWR_FIELD_VLAN_TPID) {
vlan_tpid = be16_to_cpu(headers->vlan_hdr.vlan_tpid);
rule_info->vlan_type =
ice_check_supported_vlan_tpid(vlan_tpid);
ice_rule_add_vlan_metadata(&list[ICE_TC_METADATA_LKUP_IDX]);
}
if (flags & (ICE_TC_FLWR_FIELD_CVLAN | ICE_TC_FLWR_FIELD_CVLAN_PRIO)) {
list[i].type = ICE_VLAN_IN;
if (flags & ICE_TC_FLWR_FIELD_CVLAN) {
list[i].h_u.vlan_hdr.vlan = headers->cvlan_hdr.vlan_id;
list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0x0FFF);
}
if (flags & ICE_TC_FLWR_FIELD_CVLAN_PRIO) {
if (flags & ICE_TC_FLWR_FIELD_CVLAN) {
list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xEFFF);
} else {
list[i].m_u.vlan_hdr.vlan = cpu_to_be16(0xE000);
list[i].h_u.vlan_hdr.vlan = 0;
}
list[i].h_u.vlan_hdr.vlan |=
headers->cvlan_hdr.vlan_prio;
}
i++;
}
if (flags & (ICE_TC_FLWR_FIELD_PPPOE_SESSID |
ICE_TC_FLWR_FIELD_PPP_PROTO)) {
struct ice_pppoe_hdr *vals, *masks;
vals = &list[i].h_u.pppoe_hdr;
masks = &list[i].m_u.pppoe_hdr;
list[i].type = ICE_PPPOE;
if (flags & ICE_TC_FLWR_FIELD_PPPOE_SESSID) {
vals->session_id = headers->pppoe_hdr.session_id;
masks->session_id = cpu_to_be16(0xFFFF);
}
if (flags & ICE_TC_FLWR_FIELD_PPP_PROTO) {
vals->ppp_prot_id = headers->pppoe_hdr.ppp_proto;
masks->ppp_prot_id = cpu_to_be16(0xFFFF);
}
i++;
}
/* copy L3 (IPv[4|6]: src, dest) address */
if (flags & (ICE_TC_FLWR_FIELD_DEST_IPV4 |
ICE_TC_FLWR_FIELD_SRC_IPV4)) {
struct ice_tc_l3_hdr *l3_key, *l3_mask;
list[i].type = ice_proto_type_from_ipv4(inner);
l3_key = &headers->l3_key;
l3_mask = &headers->l3_mask;
if (flags & ICE_TC_FLWR_FIELD_DEST_IPV4) {
list[i].h_u.ipv4_hdr.dst_addr = l3_key->dst_ipv4;
list[i].m_u.ipv4_hdr.dst_addr = l3_mask->dst_ipv4;
}
if (flags & ICE_TC_FLWR_FIELD_SRC_IPV4) {
list[i].h_u.ipv4_hdr.src_addr = l3_key->src_ipv4;
list[i].m_u.ipv4_hdr.src_addr = l3_mask->src_ipv4;
}
i++;
} else if (flags & (ICE_TC_FLWR_FIELD_DEST_IPV6 |
ICE_TC_FLWR_FIELD_SRC_IPV6)) {
struct ice_ipv6_hdr *ipv6_hdr, *ipv6_mask;
struct ice_tc_l3_hdr *l3_key, *l3_mask;
list[i].type = ice_proto_type_from_ipv6(inner);
ipv6_hdr = &list[i].h_u.ipv6_hdr;
ipv6_mask = &list[i].m_u.ipv6_hdr;
l3_key = &headers->l3_key;
l3_mask = &headers->l3_mask;
if (flags & ICE_TC_FLWR_FIELD_DEST_IPV6) {
memcpy(&ipv6_hdr->dst_addr, &l3_key->dst_ipv6_addr,
sizeof(l3_key->dst_ipv6_addr));
memcpy(&ipv6_mask->dst_addr, &l3_mask->dst_ipv6_addr,
sizeof(l3_mask->dst_ipv6_addr));
}
if (flags & ICE_TC_FLWR_FIELD_SRC_IPV6) {
memcpy(&ipv6_hdr->src_addr, &l3_key->src_ipv6_addr,
sizeof(l3_key->src_ipv6_addr));
memcpy(&ipv6_mask->src_addr, &l3_mask->src_ipv6_addr,
sizeof(l3_mask->src_ipv6_addr));
}
i++;
}
if (headers->l2_key.n_proto == htons(ETH_P_IP) &&
(flags & (ICE_TC_FLWR_FIELD_IP_TOS | ICE_TC_FLWR_FIELD_IP_TTL))) {
list[i].type = ice_proto_type_from_ipv4(inner);
if (flags & ICE_TC_FLWR_FIELD_IP_TOS) {
list[i].h_u.ipv4_hdr.tos = headers->l3_key.tos;
list[i].m_u.ipv4_hdr.tos = headers->l3_mask.tos;
}
if (flags & ICE_TC_FLWR_FIELD_IP_TTL) {
list[i].h_u.ipv4_hdr.time_to_live =
headers->l3_key.ttl;
list[i].m_u.ipv4_hdr.time_to_live =
headers->l3_mask.ttl;
}
i++;
}
if (headers->l2_key.n_proto == htons(ETH_P_IPV6) &&
(flags & (ICE_TC_FLWR_FIELD_IP_TOS | ICE_TC_FLWR_FIELD_IP_TTL))) {
struct ice_ipv6_hdr *hdr_h, *hdr_m;
hdr_h = &list[i].h_u.ipv6_hdr;
hdr_m = &list[i].m_u.ipv6_hdr;
list[i].type = ice_proto_type_from_ipv6(inner);
if (flags & ICE_TC_FLWR_FIELD_IP_TOS) {
be32p_replace_bits(&hdr_h->be_ver_tc_flow,
headers->l3_key.tos,
ICE_IPV6_HDR_TC_MASK);
be32p_replace_bits(&hdr_m->be_ver_tc_flow,
headers->l3_mask.tos,
ICE_IPV6_HDR_TC_MASK);
}
if (flags & ICE_TC_FLWR_FIELD_IP_TTL) {
hdr_h->hop_limit = headers->l3_key.ttl;
hdr_m->hop_limit = headers->l3_mask.ttl;
}
i++;
}
if (flags & ICE_TC_FLWR_FIELD_L2TPV3_SESSID) {
list[i].type = ICE_L2TPV3;
list[i].h_u.l2tpv3_sess_hdr.session_id =
headers->l2tpv3_hdr.session_id;
list[i].m_u.l2tpv3_sess_hdr.session_id =
cpu_to_be32(0xFFFFFFFF);
i++;
}
/* copy L4 (src, dest) port */
if (flags & (ICE_TC_FLWR_FIELD_DEST_L4_PORT |
ICE_TC_FLWR_FIELD_SRC_L4_PORT)) {
struct ice_tc_l4_hdr *l4_key, *l4_mask;
list[i].type = ice_proto_type_from_l4_port(headers->l3_key.ip_proto);
l4_key = &headers->l4_key;
l4_mask = &headers->l4_mask;
if (flags & ICE_TC_FLWR_FIELD_DEST_L4_PORT) {
list[i].h_u.l4_hdr.dst_port = l4_key->dst_port;
list[i].m_u.l4_hdr.dst_port = l4_mask->dst_port;
}
if (flags & ICE_TC_FLWR_FIELD_SRC_L4_PORT) {
list[i].h_u.l4_hdr.src_port = l4_key->src_port;
list[i].m_u.l4_hdr.src_port = l4_mask->src_port;
}
i++;
}
return i;
}
/**
* ice_tc_tun_get_type - get the tunnel type
* @tunnel_dev: ptr to tunnel device
*
* This function detects appropriate tunnel_type if specified device is
* tunnel device such as VXLAN/Geneve
*/
static int ice_tc_tun_get_type(struct net_device *tunnel_dev)
{
if (netif_is_vxlan(tunnel_dev))
return TNL_VXLAN;
if (netif_is_geneve(tunnel_dev))
return TNL_GENEVE;
if (netif_is_gretap(tunnel_dev) ||
netif_is_ip6gretap(tunnel_dev))
return TNL_GRETAP;
/* Assume GTP-U by default in case of GTP netdev.
* GTP-C may be selected later, based on enc_dst_port.
*/
if (netif_is_gtp(tunnel_dev))
return TNL_GTPU;
return TNL_LAST;
}
bool ice_is_tunnel_supported(struct net_device *dev)
{
return ice_tc_tun_get_type(dev) != TNL_LAST;
}
static bool ice_tc_is_dev_uplink(struct net_device *dev)
{
return netif_is_ice(dev) || ice_is_tunnel_supported(dev);
}
static int ice_tc_setup_redirect_action(struct net_device *filter_dev,
struct ice_tc_flower_fltr *fltr,
struct net_device *target_dev)
{
struct ice_repr *repr;
fltr->action.fltr_act = ICE_FWD_TO_VSI;
if (ice_is_port_repr_netdev(filter_dev) &&
ice_is_port_repr_netdev(target_dev)) {
repr = ice_netdev_to_repr(target_dev);
fltr->dest_vsi = repr->src_vsi;
fltr->direction = ICE_ESWITCH_FLTR_EGRESS;
} else if (ice_is_port_repr_netdev(filter_dev) &&
ice_tc_is_dev_uplink(target_dev)) {
repr = ice_netdev_to_repr(filter_dev);
fltr->dest_vsi = repr->src_vsi->back->switchdev.uplink_vsi;
fltr->direction = ICE_ESWITCH_FLTR_EGRESS;
} else if (ice_tc_is_dev_uplink(filter_dev) &&
ice_is_port_repr_netdev(target_dev)) {
repr = ice_netdev_to_repr(target_dev);
fltr->dest_vsi = repr->src_vsi;
fltr->direction = ICE_ESWITCH_FLTR_INGRESS;
} else {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Unsupported netdevice in switchdev mode");
return -EINVAL;
}
return 0;
}
static int
ice_tc_setup_drop_action(struct net_device *filter_dev,
struct ice_tc_flower_fltr *fltr)
{
fltr->action.fltr_act = ICE_DROP_PACKET;
if (ice_is_port_repr_netdev(filter_dev)) {
fltr->direction = ICE_ESWITCH_FLTR_EGRESS;
} else if (ice_tc_is_dev_uplink(filter_dev)) {
fltr->direction = ICE_ESWITCH_FLTR_INGRESS;
} else {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Unsupported netdevice in switchdev mode");
return -EINVAL;
}
return 0;
}
static int ice_eswitch_tc_parse_action(struct net_device *filter_dev,
struct ice_tc_flower_fltr *fltr,
struct flow_action_entry *act)
{
int err;
switch (act->id) {
case FLOW_ACTION_DROP:
err = ice_tc_setup_drop_action(filter_dev, fltr);
if (err)
return err;
break;
case FLOW_ACTION_REDIRECT:
err = ice_tc_setup_redirect_action(filter_dev, fltr, act->dev);
if (err)
return err;
break;
default:
NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported action in switchdev mode");
return -EINVAL;
}
return 0;
}
static int
ice_eswitch_add_tc_fltr(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
struct ice_tc_flower_lyr_2_4_hdrs *headers = &fltr->outer_headers;
struct ice_adv_rule_info rule_info = { 0 };
struct ice_rule_query_data rule_added;
struct ice_hw *hw = &vsi->back->hw;
struct ice_adv_lkup_elem *list;
u32 flags = fltr->flags;
int lkups_cnt;
int ret;
int i;
if (!flags || (flags & ICE_TC_FLWR_FIELD_ENC_SRC_L4_PORT)) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported encap field(s)");
return -EOPNOTSUPP;
}
lkups_cnt = ice_tc_count_lkups(flags, headers, fltr);
list = kcalloc(lkups_cnt, sizeof(*list), GFP_ATOMIC);
if (!list)
return -ENOMEM;
i = ice_tc_fill_rules(hw, flags, fltr, list, &rule_info, NULL);
if (i != lkups_cnt) {
ret = -EINVAL;
goto exit;
}
rule_info.sw_act.fltr_act = fltr->action.fltr_act;
if (fltr->action.fltr_act != ICE_DROP_PACKET)
rule_info.sw_act.vsi_handle = fltr->dest_vsi->idx;
/* For now, making priority to be highest, and it also becomes
* the priority for recipe which will get created as a result of
* new extraction sequence based on input set.
* Priority '7' is max val for switch recipe, higher the number
* results into order of switch rule evaluation.
*/
rule_info.priority = 7;
rule_info.flags_info.act_valid = true;
if (fltr->direction == ICE_ESWITCH_FLTR_INGRESS) {
/* Uplink to VF */
rule_info.sw_act.flag |= ICE_FLTR_RX;
rule_info.sw_act.src = hw->pf_id;
rule_info.flags_info.act = ICE_SINGLE_ACT_LB_ENABLE;
} else if (fltr->direction == ICE_ESWITCH_FLTR_EGRESS &&
fltr->dest_vsi == vsi->back->switchdev.uplink_vsi) {
/* VF to Uplink */
rule_info.sw_act.flag |= ICE_FLTR_TX;
rule_info.sw_act.src = vsi->idx;
rule_info.flags_info.act = ICE_SINGLE_ACT_LAN_ENABLE;
} else {
/* VF to VF */
rule_info.sw_act.flag |= ICE_FLTR_TX;
rule_info.sw_act.src = vsi->idx;
rule_info.flags_info.act = ICE_SINGLE_ACT_LB_ENABLE;
}
/* specify the cookie as filter_rule_id */
rule_info.fltr_rule_id = fltr->cookie;
ret = ice_add_adv_rule(hw, list, lkups_cnt, &rule_info, &rule_added);
if (ret == -EEXIST) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Unable to add filter because it already exist");
ret = -EINVAL;
goto exit;
} else if (ret) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Unable to add filter due to error");
goto exit;
}
/* store the output params, which are needed later for removing
* advanced switch filter
*/
fltr->rid = rule_added.rid;
fltr->rule_id = rule_added.rule_id;
fltr->dest_vsi_handle = rule_added.vsi_handle;
exit:
kfree(list);
return ret;
}
/**
* ice_locate_vsi_using_queue - locate VSI using queue (forward to queue action)
* @vsi: Pointer to VSI
* @queue: Queue index
*
* Locate the VSI using specified "queue". When ADQ is not enabled,
* always return input VSI, otherwise locate corresponding
* VSI based on per channel "offset" and "qcount"
*/
struct ice_vsi *
ice_locate_vsi_using_queue(struct ice_vsi *vsi, int queue)
{
int num_tc, tc;
/* if ADQ is not active, passed VSI is the candidate VSI */
if (!ice_is_adq_active(vsi->back))
return vsi;
/* Locate the VSI (it could still be main PF VSI or CHNL_VSI depending
* upon queue number)
*/
num_tc = vsi->mqprio_qopt.qopt.num_tc;
for (tc = 0; tc < num_tc; tc++) {
int qcount = vsi->mqprio_qopt.qopt.count[tc];
int offset = vsi->mqprio_qopt.qopt.offset[tc];
if (queue >= offset && queue < offset + qcount) {
/* for non-ADQ TCs, passed VSI is the candidate VSI */
if (tc < ICE_CHNL_START_TC)
return vsi;
else
return vsi->tc_map_vsi[tc];
}
}
return NULL;
}
static struct ice_rx_ring *
ice_locate_rx_ring_using_queue(struct ice_vsi *vsi,
struct ice_tc_flower_fltr *tc_fltr)
{
u16 queue = tc_fltr->action.fwd.q.queue;
return queue < vsi->num_rxq ? vsi->rx_rings[queue] : NULL;
}
/**
* ice_tc_forward_action - Determine destination VSI and queue for the action
* @vsi: Pointer to VSI
* @tc_fltr: Pointer to TC flower filter structure
*
* Validates the tc forward action and determines the destination VSI and queue
* for the forward action.
*/
static struct ice_vsi *
ice_tc_forward_action(struct ice_vsi *vsi, struct ice_tc_flower_fltr *tc_fltr)
{
struct ice_rx_ring *ring = NULL;
struct ice_vsi *dest_vsi = NULL;
struct ice_pf *pf = vsi->back;
struct device *dev;
u32 tc_class;
int q;
dev = ice_pf_to_dev(pf);
/* Get the destination VSI and/or destination queue and validate them */
switch (tc_fltr->action.fltr_act) {
case ICE_FWD_TO_VSI:
tc_class = tc_fltr->action.fwd.tc.tc_class;
/* Select the destination VSI */
if (tc_class < ICE_CHNL_START_TC) {
NL_SET_ERR_MSG_MOD(tc_fltr->extack,
"Unable to add filter because of unsupported destination");
return ERR_PTR(-EOPNOTSUPP);
}
/* Locate ADQ VSI depending on hw_tc number */
dest_vsi = vsi->tc_map_vsi[tc_class];
break;
case ICE_FWD_TO_Q:
/* Locate the Rx queue */
ring = ice_locate_rx_ring_using_queue(vsi, tc_fltr);
if (!ring) {
dev_err(dev,
"Unable to locate Rx queue for action fwd_to_queue: %u\n",
tc_fltr->action.fwd.q.queue);
return ERR_PTR(-EINVAL);
}
/* Determine destination VSI even though the action is
* FWD_TO_QUEUE, because QUEUE is associated with VSI
*/
q = tc_fltr->action.fwd.q.queue;
dest_vsi = ice_locate_vsi_using_queue(vsi, q);
break;
default:
dev_err(dev,
"Unable to add filter because of unsupported action %u (supported actions: fwd to tc, fwd to queue)\n",
tc_fltr->action.fltr_act);
return ERR_PTR(-EINVAL);
}
/* Must have valid dest_vsi (it could be main VSI or ADQ VSI) */
if (!dest_vsi) {
dev_err(dev,
"Unable to add filter because specified destination VSI doesn't exist\n");
return ERR_PTR(-EINVAL);
}
return dest_vsi;
}
/**
* ice_add_tc_flower_adv_fltr - add appropriate filter rules
* @vsi: Pointer to VSI
* @tc_fltr: Pointer to TC flower filter structure
*
* based on filter parameters using Advance recipes supported
* by OS package.
*/
static int
ice_add_tc_flower_adv_fltr(struct ice_vsi *vsi,
struct ice_tc_flower_fltr *tc_fltr)
{
struct ice_tc_flower_lyr_2_4_hdrs *headers = &tc_fltr->outer_headers;
struct ice_adv_rule_info rule_info = {0};
struct ice_rule_query_data rule_added;
struct ice_adv_lkup_elem *list;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 flags = tc_fltr->flags;
struct ice_vsi *dest_vsi;
struct device *dev;
u16 lkups_cnt = 0;
u16 l4_proto = 0;
int ret = 0;
u16 i = 0;
dev = ice_pf_to_dev(pf);
if (ice_is_safe_mode(pf)) {
NL_SET_ERR_MSG_MOD(tc_fltr->extack, "Unable to add filter because driver is in safe mode");
return -EOPNOTSUPP;
}
if (!flags || (flags & (ICE_TC_FLWR_FIELD_ENC_DEST_IPV4 |
ICE_TC_FLWR_FIELD_ENC_SRC_IPV4 |
ICE_TC_FLWR_FIELD_ENC_DEST_IPV6 |
ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
ICE_TC_FLWR_FIELD_ENC_SRC_L4_PORT))) {
NL_SET_ERR_MSG_MOD(tc_fltr->extack, "Unsupported encap field(s)");
return -EOPNOTSUPP;
}
/* validate forwarding action VSI and queue */
if (ice_is_forward_action(tc_fltr->action.fltr_act)) {
dest_vsi = ice_tc_forward_action(vsi, tc_fltr);
if (IS_ERR(dest_vsi))
return PTR_ERR(dest_vsi);
}
lkups_cnt = ice_tc_count_lkups(flags, headers, tc_fltr);
list = kcalloc(lkups_cnt, sizeof(*list), GFP_ATOMIC);
if (!list)
return -ENOMEM;
i = ice_tc_fill_rules(hw, flags, tc_fltr, list, &rule_info, &l4_proto);
if (i != lkups_cnt) {
ret = -EINVAL;
goto exit;
}
rule_info.sw_act.fltr_act = tc_fltr->action.fltr_act;
/* specify the cookie as filter_rule_id */
rule_info.fltr_rule_id = tc_fltr->cookie;
switch (tc_fltr->action.fltr_act) {
case ICE_FWD_TO_VSI:
rule_info.sw_act.vsi_handle = dest_vsi->idx;
rule_info.priority = ICE_SWITCH_FLTR_PRIO_VSI;
rule_info.sw_act.src = hw->pf_id;
dev_dbg(dev, "add switch rule for TC:%u vsi_idx:%u, lkups_cnt:%u\n",
tc_fltr->action.fwd.tc.tc_class,
rule_info.sw_act.vsi_handle, lkups_cnt);
break;
case ICE_FWD_TO_Q:
/* HW queue number in global space */
rule_info.sw_act.fwd_id.q_id = tc_fltr->action.fwd.q.hw_queue;
rule_info.sw_act.vsi_handle = dest_vsi->idx;
rule_info.priority = ICE_SWITCH_FLTR_PRIO_QUEUE;
rule_info.sw_act.src = hw->pf_id;
dev_dbg(dev, "add switch rule action to forward to queue:%u (HW queue %u), lkups_cnt:%u\n",
tc_fltr->action.fwd.q.queue,
tc_fltr->action.fwd.q.hw_queue, lkups_cnt);
break;
case ICE_DROP_PACKET:
rule_info.sw_act.flag |= ICE_FLTR_RX;
rule_info.sw_act.src = hw->pf_id;
rule_info.priority = ICE_SWITCH_FLTR_PRIO_VSI;
break;
default:
ret = -EOPNOTSUPP;
goto exit;
}
ret = ice_add_adv_rule(hw, list, lkups_cnt, &rule_info, &rule_added);
if (ret == -EEXIST) {
NL_SET_ERR_MSG_MOD(tc_fltr->extack,
"Unable to add filter because it already exist");
ret = -EINVAL;
goto exit;
} else if (ret) {
NL_SET_ERR_MSG_MOD(tc_fltr->extack,
"Unable to add filter due to error");
goto exit;
}
/* store the output params, which are needed later for removing
* advanced switch filter
*/
tc_fltr->rid = rule_added.rid;
tc_fltr->rule_id = rule_added.rule_id;
tc_fltr->dest_vsi_handle = rule_added.vsi_handle;
if (tc_fltr->action.fltr_act == ICE_FWD_TO_VSI ||
tc_fltr->action.fltr_act == ICE_FWD_TO_Q) {
tc_fltr->dest_vsi = dest_vsi;
/* keep track of advanced switch filter for
* destination VSI
*/
dest_vsi->num_chnl_fltr++;
/* keeps track of channel filters for PF VSI */
if (vsi->type == ICE_VSI_PF &&
(flags & (ICE_TC_FLWR_FIELD_DST_MAC |
ICE_TC_FLWR_FIELD_ENC_DST_MAC)))
pf->num_dmac_chnl_fltrs++;
}
switch (tc_fltr->action.fltr_act) {
case ICE_FWD_TO_VSI:
dev_dbg(dev, "added switch rule (lkups_cnt %u, flags 0x%x), action is forward to TC %u, rid %u, rule_id %u, vsi_idx %u\n",
lkups_cnt, flags,
tc_fltr->action.fwd.tc.tc_class, rule_added.rid,
rule_added.rule_id, rule_added.vsi_handle);
break;
case ICE_FWD_TO_Q:
dev_dbg(dev, "added switch rule (lkups_cnt %u, flags 0x%x), action is forward to queue: %u (HW queue %u) , rid %u, rule_id %u\n",
lkups_cnt, flags, tc_fltr->action.fwd.q.queue,
tc_fltr->action.fwd.q.hw_queue, rule_added.rid,
rule_added.rule_id);
break;
case ICE_DROP_PACKET:
dev_dbg(dev, "added switch rule (lkups_cnt %u, flags 0x%x), action is drop, rid %u, rule_id %u\n",
lkups_cnt, flags, rule_added.rid, rule_added.rule_id);
break;
default:
break;
}
exit:
kfree(list);
return ret;
}
/**
* ice_tc_set_pppoe - Parse PPPoE fields from TC flower filter
* @match: Pointer to flow match structure
* @fltr: Pointer to filter structure
* @headers: Pointer to outer header fields
* @returns PPP protocol used in filter (ppp_ses or ppp_disc)
*/
static u16
ice_tc_set_pppoe(struct flow_match_pppoe *match,
struct ice_tc_flower_fltr *fltr,
struct ice_tc_flower_lyr_2_4_hdrs *headers)
{
if (match->mask->session_id) {
fltr->flags |= ICE_TC_FLWR_FIELD_PPPOE_SESSID;
headers->pppoe_hdr.session_id = match->key->session_id;
}
if (match->mask->ppp_proto) {
fltr->flags |= ICE_TC_FLWR_FIELD_PPP_PROTO;
headers->pppoe_hdr.ppp_proto = match->key->ppp_proto;
}
return be16_to_cpu(match->key->type);
}
/**
* ice_tc_set_ipv4 - Parse IPv4 addresses from TC flower filter
* @match: Pointer to flow match structure
* @fltr: Pointer to filter structure
* @headers: inner or outer header fields
* @is_encap: set true for tunnel IPv4 address
*/
static int
ice_tc_set_ipv4(struct flow_match_ipv4_addrs *match,
struct ice_tc_flower_fltr *fltr,
struct ice_tc_flower_lyr_2_4_hdrs *headers, bool is_encap)
{
if (match->key->dst) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DEST_IPV4;
else
fltr->flags |= ICE_TC_FLWR_FIELD_DEST_IPV4;
headers->l3_key.dst_ipv4 = match->key->dst;
headers->l3_mask.dst_ipv4 = match->mask->dst;
}
if (match->key->src) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_SRC_IPV4;
else
fltr->flags |= ICE_TC_FLWR_FIELD_SRC_IPV4;
headers->l3_key.src_ipv4 = match->key->src;
headers->l3_mask.src_ipv4 = match->mask->src;
}
return 0;
}
/**
* ice_tc_set_ipv6 - Parse IPv6 addresses from TC flower filter
* @match: Pointer to flow match structure
* @fltr: Pointer to filter structure
* @headers: inner or outer header fields
* @is_encap: set true for tunnel IPv6 address
*/
static int
ice_tc_set_ipv6(struct flow_match_ipv6_addrs *match,
struct ice_tc_flower_fltr *fltr,
struct ice_tc_flower_lyr_2_4_hdrs *headers, bool is_encap)
{
struct ice_tc_l3_hdr *l3_key, *l3_mask;
/* src and dest IPV6 address should not be LOOPBACK
* (0:0:0:0:0:0:0:1), which can be represented as ::1
*/
if (ipv6_addr_loopback(&match->key->dst) ||
ipv6_addr_loopback(&match->key->src)) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Bad IPv6, addr is LOOPBACK");
return -EINVAL;
}
/* if src/dest IPv6 address is *,* error */
if (ipv6_addr_any(&match->mask->dst) &&
ipv6_addr_any(&match->mask->src)) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Bad src/dest IPv6, addr is any");
return -EINVAL;
}
if (!ipv6_addr_any(&match->mask->dst)) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DEST_IPV6;
else
fltr->flags |= ICE_TC_FLWR_FIELD_DEST_IPV6;
}
if (!ipv6_addr_any(&match->mask->src)) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_SRC_IPV6;
else
fltr->flags |= ICE_TC_FLWR_FIELD_SRC_IPV6;
}
l3_key = &headers->l3_key;
l3_mask = &headers->l3_mask;
if (fltr->flags & (ICE_TC_FLWR_FIELD_ENC_SRC_IPV6 |
ICE_TC_FLWR_FIELD_SRC_IPV6)) {
memcpy(&l3_key->src_ipv6_addr, &match->key->src.s6_addr,
sizeof(match->key->src.s6_addr));
memcpy(&l3_mask->src_ipv6_addr, &match->mask->src.s6_addr,
sizeof(match->mask->src.s6_addr));
}
if (fltr->flags & (ICE_TC_FLWR_FIELD_ENC_DEST_IPV6 |
ICE_TC_FLWR_FIELD_DEST_IPV6)) {
memcpy(&l3_key->dst_ipv6_addr, &match->key->dst.s6_addr,
sizeof(match->key->dst.s6_addr));
memcpy(&l3_mask->dst_ipv6_addr, &match->mask->dst.s6_addr,
sizeof(match->mask->dst.s6_addr));
}
return 0;
}
/**
* ice_tc_set_tos_ttl - Parse IP ToS/TTL from TC flower filter
* @match: Pointer to flow match structure
* @fltr: Pointer to filter structure
* @headers: inner or outer header fields
* @is_encap: set true for tunnel
*/
static void
ice_tc_set_tos_ttl(struct flow_match_ip *match,
struct ice_tc_flower_fltr *fltr,
struct ice_tc_flower_lyr_2_4_hdrs *headers,
bool is_encap)
{
if (match->mask->tos) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_IP_TOS;
else
fltr->flags |= ICE_TC_FLWR_FIELD_IP_TOS;
headers->l3_key.tos = match->key->tos;
headers->l3_mask.tos = match->mask->tos;
}
if (match->mask->ttl) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_IP_TTL;
else
fltr->flags |= ICE_TC_FLWR_FIELD_IP_TTL;
headers->l3_key.ttl = match->key->ttl;
headers->l3_mask.ttl = match->mask->ttl;
}
}
/**
* ice_tc_set_port - Parse ports from TC flower filter
* @match: Flow match structure
* @fltr: Pointer to filter structure
* @headers: inner or outer header fields
* @is_encap: set true for tunnel port
*/
static int
ice_tc_set_port(struct flow_match_ports match,
struct ice_tc_flower_fltr *fltr,
struct ice_tc_flower_lyr_2_4_hdrs *headers, bool is_encap)
{
if (match.key->dst) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DEST_L4_PORT;
else
fltr->flags |= ICE_TC_FLWR_FIELD_DEST_L4_PORT;
headers->l4_key.dst_port = match.key->dst;
headers->l4_mask.dst_port = match.mask->dst;
}
if (match.key->src) {
if (is_encap)
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_SRC_L4_PORT;
else
fltr->flags |= ICE_TC_FLWR_FIELD_SRC_L4_PORT;
headers->l4_key.src_port = match.key->src;
headers->l4_mask.src_port = match.mask->src;
}
return 0;
}
static struct net_device *
ice_get_tunnel_device(struct net_device *dev, struct flow_rule *rule)
{
struct flow_action_entry *act;
int i;
if (ice_is_tunnel_supported(dev))
return dev;
flow_action_for_each(i, act, &rule->action) {
if (act->id == FLOW_ACTION_REDIRECT &&
ice_is_tunnel_supported(act->dev))
return act->dev;
}
return NULL;
}
/**
* ice_parse_gtp_type - Sets GTP tunnel type to GTP-U or GTP-C
* @match: Flow match structure
* @fltr: Pointer to filter structure
*
* GTP-C/GTP-U is selected based on destination port number (enc_dst_port).
* Before calling this funtcion, fltr->tunnel_type should be set to TNL_GTPU,
* therefore making GTP-U the default choice (when destination port number is
* not specified).
*/
static int
ice_parse_gtp_type(struct flow_match_ports match,
struct ice_tc_flower_fltr *fltr)
{
u16 dst_port;
if (match.key->dst) {
dst_port = be16_to_cpu(match.key->dst);
switch (dst_port) {
case 2152:
break;
case 2123:
fltr->tunnel_type = TNL_GTPC;
break;
default:
NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported GTP port number");
return -EINVAL;
}
}
return 0;
}
static int
ice_parse_tunnel_attr(struct net_device *dev, struct flow_rule *rule,
struct ice_tc_flower_fltr *fltr)
{
struct ice_tc_flower_lyr_2_4_hdrs *headers = &fltr->outer_headers;
struct flow_match_control enc_control;
fltr->tunnel_type = ice_tc_tun_get_type(dev);
headers->l3_key.ip_proto = IPPROTO_UDP;
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid enc_keyid;
flow_rule_match_enc_keyid(rule, &enc_keyid);
if (!enc_keyid.mask->keyid ||
enc_keyid.mask->keyid != cpu_to_be32(ICE_TC_FLOWER_MASK_32))
return -EINVAL;
fltr->flags |= ICE_TC_FLWR_FIELD_TENANT_ID;
fltr->tenant_id = enc_keyid.key->keyid;
}
flow_rule_match_enc_control(rule, &enc_control);
if (enc_control.key->addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
struct flow_match_ipv4_addrs match;
flow_rule_match_enc_ipv4_addrs(rule, &match);
if (ice_tc_set_ipv4(&match, fltr, headers, true))
return -EINVAL;
} else if (enc_control.key->addr_type ==
FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_match_ipv6_addrs match;
flow_rule_match_enc_ipv6_addrs(rule, &match);
if (ice_tc_set_ipv6(&match, fltr, headers, true))
return -EINVAL;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IP)) {
struct flow_match_ip match;
flow_rule_match_enc_ip(rule, &match);
ice_tc_set_tos_ttl(&match, fltr, headers, true);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS) &&
fltr->tunnel_type != TNL_VXLAN && fltr->tunnel_type != TNL_GENEVE) {
struct flow_match_ports match;
flow_rule_match_enc_ports(rule, &match);
if (fltr->tunnel_type != TNL_GTPU) {
if (ice_tc_set_port(match, fltr, headers, true))
return -EINVAL;
} else {
if (ice_parse_gtp_type(match, fltr))
return -EINVAL;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
struct flow_match_enc_opts match;
flow_rule_match_enc_opts(rule, &match);
memcpy(&fltr->gtp_pdu_info_keys, &match.key->data[0],
sizeof(struct gtp_pdu_session_info));
memcpy(&fltr->gtp_pdu_info_masks, &match.mask->data[0],
sizeof(struct gtp_pdu_session_info));
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_OPTS;
}
return 0;
}
/**
* ice_parse_cls_flower - Parse TC flower filters provided by kernel
* @vsi: Pointer to the VSI
* @filter_dev: Pointer to device on which filter is being added
* @f: Pointer to struct flow_cls_offload
* @fltr: Pointer to filter structure
*/
static int
ice_parse_cls_flower(struct net_device *filter_dev, struct ice_vsi *vsi,
struct flow_cls_offload *f,
struct ice_tc_flower_fltr *fltr)
{
struct ice_tc_flower_lyr_2_4_hdrs *headers = &fltr->outer_headers;
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0;
struct flow_dissector *dissector;
struct net_device *tunnel_dev;
dissector = rule->match.dissector;
if (dissector->used_keys &
~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
BIT_ULL(FLOW_DISSECTOR_KEY_CVLAN) |
BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_OPTS) |
BIT_ULL(FLOW_DISSECTOR_KEY_IP) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IP) |
BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
BIT_ULL(FLOW_DISSECTOR_KEY_PPPOE) |
BIT_ULL(FLOW_DISSECTOR_KEY_L2TPV3))) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported key used");
return -EOPNOTSUPP;
}
tunnel_dev = ice_get_tunnel_device(filter_dev, rule);
if (tunnel_dev) {
int err;
filter_dev = tunnel_dev;
err = ice_parse_tunnel_attr(filter_dev, rule, fltr);
if (err) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Failed to parse TC flower tunnel attributes");
return err;
}
/* header pointers should point to the inner headers, outer
* header were already set by ice_parse_tunnel_attr
*/
headers = &fltr->inner_headers;
} else if (dissector->used_keys &
(BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS))) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Tunnel key used, but device isn't a tunnel");
return -EOPNOTSUPP;
} else {
fltr->tunnel_type = TNL_LAST;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
n_proto_key = ntohs(match.key->n_proto);
n_proto_mask = ntohs(match.mask->n_proto);
if (n_proto_key == ETH_P_ALL || n_proto_key == 0 ||
fltr->tunnel_type == TNL_GTPU ||
fltr->tunnel_type == TNL_GTPC) {
n_proto_key = 0;
n_proto_mask = 0;
} else {
fltr->flags |= ICE_TC_FLWR_FIELD_ETH_TYPE_ID;
}
headers->l2_key.n_proto = cpu_to_be16(n_proto_key);
headers->l2_mask.n_proto = cpu_to_be16(n_proto_mask);
headers->l3_key.ip_proto = match.key->ip_proto;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
if (!is_zero_ether_addr(match.key->dst)) {
ether_addr_copy(headers->l2_key.dst_mac,
match.key->dst);
ether_addr_copy(headers->l2_mask.dst_mac,
match.mask->dst);
fltr->flags |= ICE_TC_FLWR_FIELD_DST_MAC;
}
if (!is_zero_ether_addr(match.key->src)) {
ether_addr_copy(headers->l2_key.src_mac,
match.key->src);
ether_addr_copy(headers->l2_mask.src_mac,
match.mask->src);
fltr->flags |= ICE_TC_FLWR_FIELD_SRC_MAC;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN) ||
is_vlan_dev(filter_dev)) {
struct flow_dissector_key_vlan mask;
struct flow_dissector_key_vlan key;
struct flow_match_vlan match;
if (is_vlan_dev(filter_dev)) {
match.key = &key;
match.key->vlan_id = vlan_dev_vlan_id(filter_dev);
match.key->vlan_priority = 0;
match.mask = &mask;
memset(match.mask, 0xff, sizeof(*match.mask));
match.mask->vlan_priority = 0;
} else {
flow_rule_match_vlan(rule, &match);
}
if (match.mask->vlan_id) {
if (match.mask->vlan_id == VLAN_VID_MASK) {
fltr->flags |= ICE_TC_FLWR_FIELD_VLAN;
headers->vlan_hdr.vlan_id =
cpu_to_be16(match.key->vlan_id &
VLAN_VID_MASK);
} else {
NL_SET_ERR_MSG_MOD(fltr->extack, "Bad VLAN mask");
return -EINVAL;
}
}
if (match.mask->vlan_priority) {
fltr->flags |= ICE_TC_FLWR_FIELD_VLAN_PRIO;
headers->vlan_hdr.vlan_prio =
be16_encode_bits(match.key->vlan_priority,
VLAN_PRIO_MASK);
}
if (match.mask->vlan_tpid) {
headers->vlan_hdr.vlan_tpid = match.key->vlan_tpid;
fltr->flags |= ICE_TC_FLWR_FIELD_VLAN_TPID;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) {
struct flow_match_vlan match;
if (!ice_is_dvm_ena(&vsi->back->hw)) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Double VLAN mode is not enabled");
return -EINVAL;
}
flow_rule_match_cvlan(rule, &match);
if (match.mask->vlan_id) {
if (match.mask->vlan_id == VLAN_VID_MASK) {
fltr->flags |= ICE_TC_FLWR_FIELD_CVLAN;
headers->cvlan_hdr.vlan_id =
cpu_to_be16(match.key->vlan_id &
VLAN_VID_MASK);
} else {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Bad CVLAN mask");
return -EINVAL;
}
}
if (match.mask->vlan_priority) {
fltr->flags |= ICE_TC_FLWR_FIELD_CVLAN_PRIO;
headers->cvlan_hdr.vlan_prio =
be16_encode_bits(match.key->vlan_priority,
VLAN_PRIO_MASK);
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PPPOE)) {
struct flow_match_pppoe match;
flow_rule_match_pppoe(rule, &match);
n_proto_key = ice_tc_set_pppoe(&match, fltr, headers);
/* If ethertype equals ETH_P_PPP_SES, n_proto might be
* overwritten by encapsulated protocol (ppp_proto field) or set
* to 0. To correct this, flow_match_pppoe provides the type
* field, which contains the actual ethertype (ETH_P_PPP_SES).
*/
headers->l2_key.n_proto = cpu_to_be16(n_proto_key);
headers->l2_mask.n_proto = cpu_to_be16(0xFFFF);
fltr->flags |= ICE_TC_FLWR_FIELD_ETH_TYPE_ID;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match;
flow_rule_match_control(rule, &match);
addr_type = match.key->addr_type;
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
if (ice_tc_set_ipv4(&match, fltr, headers, false))
return -EINVAL;
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
if (ice_tc_set_ipv6(&match, fltr, headers, false))
return -EINVAL;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IP)) {
struct flow_match_ip match;
flow_rule_match_ip(rule, &match);
ice_tc_set_tos_ttl(&match, fltr, headers, false);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_L2TPV3)) {
struct flow_match_l2tpv3 match;
flow_rule_match_l2tpv3(rule, &match);
fltr->flags |= ICE_TC_FLWR_FIELD_L2TPV3_SESSID;
headers->l2tpv3_hdr.session_id = match.key->session_id;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
if (ice_tc_set_port(match, fltr, headers, false))
return -EINVAL;
switch (headers->l3_key.ip_proto) {
case IPPROTO_TCP:
case IPPROTO_UDP:
break;
default:
NL_SET_ERR_MSG_MOD(fltr->extack, "Only UDP and TCP transport are supported");
return -EINVAL;
}
}
return 0;
}
/**
* ice_add_switch_fltr - Add TC flower filters
* @vsi: Pointer to VSI
* @fltr: Pointer to struct ice_tc_flower_fltr
*
* Add filter in HW switch block
*/
static int
ice_add_switch_fltr(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
if (fltr->action.fltr_act == ICE_FWD_TO_QGRP)
return -EOPNOTSUPP;
if (ice_is_eswitch_mode_switchdev(vsi->back))
return ice_eswitch_add_tc_fltr(vsi, fltr);
return ice_add_tc_flower_adv_fltr(vsi, fltr);
}
/**
* ice_prep_adq_filter - Prepare ADQ filter with the required additional headers
* @vsi: Pointer to VSI
* @fltr: Pointer to TC flower filter structure
*
* Prepare ADQ filter with the required additional header fields
*/
static int
ice_prep_adq_filter(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
if ((fltr->flags & ICE_TC_FLWR_FIELD_TENANT_ID) &&
(fltr->flags & (ICE_TC_FLWR_FIELD_DST_MAC |
ICE_TC_FLWR_FIELD_SRC_MAC))) {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Unable to add filter because filter using tunnel key and inner MAC is unsupported combination");
return -EOPNOTSUPP;
}
/* For ADQ, filter must include dest MAC address, otherwise unwanted
* packets with unrelated MAC address get delivered to ADQ VSIs as long
* as remaining filter criteria is satisfied such as dest IP address
* and dest/src L4 port. Below code handles the following cases:
* 1. For non-tunnel, if user specify MAC addresses, use them.
* 2. For non-tunnel, if user didn't specify MAC address, add implicit
* dest MAC to be lower netdev's active unicast MAC address
* 3. For tunnel, as of now TC-filter through flower classifier doesn't
* have provision for user to specify outer DMAC, hence driver to
* implicitly add outer dest MAC to be lower netdev's active unicast
* MAC address.
*/
if (fltr->tunnel_type != TNL_LAST &&
!(fltr->flags & ICE_TC_FLWR_FIELD_ENC_DST_MAC))
fltr->flags |= ICE_TC_FLWR_FIELD_ENC_DST_MAC;
if (fltr->tunnel_type == TNL_LAST &&
!(fltr->flags & ICE_TC_FLWR_FIELD_DST_MAC))
fltr->flags |= ICE_TC_FLWR_FIELD_DST_MAC;
if (fltr->flags & (ICE_TC_FLWR_FIELD_DST_MAC |
ICE_TC_FLWR_FIELD_ENC_DST_MAC)) {
ether_addr_copy(fltr->outer_headers.l2_key.dst_mac,
vsi->netdev->dev_addr);
eth_broadcast_addr(fltr->outer_headers.l2_mask.dst_mac);
}
/* Make sure VLAN is already added to main VSI, before allowing ADQ to
* add a VLAN based filter such as MAC + VLAN + L4 port.
*/
if (fltr->flags & ICE_TC_FLWR_FIELD_VLAN) {
u16 vlan_id = be16_to_cpu(fltr->outer_headers.vlan_hdr.vlan_id);
if (!ice_vlan_fltr_exist(&vsi->back->hw, vlan_id, vsi->idx)) {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Unable to add filter because legacy VLAN filter for specified destination doesn't exist");
return -EINVAL;
}
}
return 0;
}
/**
* ice_handle_tclass_action - Support directing to a traffic class
* @vsi: Pointer to VSI
* @cls_flower: Pointer to TC flower offload structure
* @fltr: Pointer to TC flower filter structure
*
* Support directing traffic to a traffic class/queue-set
*/
static int
ice_handle_tclass_action(struct ice_vsi *vsi,
struct flow_cls_offload *cls_flower,
struct ice_tc_flower_fltr *fltr)
{
int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid);
/* user specified hw_tc (must be non-zero for ADQ TC), action is forward
* to hw_tc (i.e. ADQ channel number)
*/
if (tc < ICE_CHNL_START_TC) {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Unable to add filter because of unsupported destination");
return -EOPNOTSUPP;
}
if (!(vsi->all_enatc & BIT(tc))) {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Unable to add filter because of non-existence destination");
return -EINVAL;
}
fltr->action.fltr_act = ICE_FWD_TO_VSI;
fltr->action.fwd.tc.tc_class = tc;
return ice_prep_adq_filter(vsi, fltr);
}
static int
ice_tc_forward_to_queue(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr,
struct flow_action_entry *act)
{
struct ice_vsi *ch_vsi = NULL;
u16 queue = act->rx_queue;
if (queue >= vsi->num_rxq) {
NL_SET_ERR_MSG_MOD(fltr->extack,
"Unable to add filter because specified queue is invalid");
return -EINVAL;
}
fltr->action.fltr_act = ICE_FWD_TO_Q;
fltr->action.fwd.q.queue = queue;
/* determine corresponding HW queue */
fltr->action.fwd.q.hw_queue = vsi->rxq_map[queue];
/* If ADQ is configured, and the queue belongs to ADQ VSI, then prepare
* ADQ switch filter
*/
ch_vsi = ice_locate_vsi_using_queue(vsi, fltr->action.fwd.q.queue);
if (!ch_vsi)
return -EINVAL;
fltr->dest_vsi = ch_vsi;
if (!ice_is_chnl_fltr(fltr))
return 0;
return ice_prep_adq_filter(vsi, fltr);
}
static int
ice_tc_parse_action(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr,
struct flow_action_entry *act)
{
switch (act->id) {
case FLOW_ACTION_RX_QUEUE_MAPPING:
/* forward to queue */
return ice_tc_forward_to_queue(vsi, fltr, act);
case FLOW_ACTION_DROP:
fltr->action.fltr_act = ICE_DROP_PACKET;
return 0;
default:
NL_SET_ERR_MSG_MOD(fltr->extack, "Unsupported TC action");
return -EOPNOTSUPP;
}
}
/**
* ice_parse_tc_flower_actions - Parse the actions for a TC filter
* @filter_dev: Pointer to device on which filter is being added
* @vsi: Pointer to VSI
* @cls_flower: Pointer to TC flower offload structure
* @fltr: Pointer to TC flower filter structure
*
* Parse the actions for a TC filter
*/
static int ice_parse_tc_flower_actions(struct net_device *filter_dev,
struct ice_vsi *vsi,
struct flow_cls_offload *cls_flower,
struct ice_tc_flower_fltr *fltr)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls_flower);
struct flow_action *flow_action = &rule->action;
struct flow_action_entry *act;
int i, err;
if (cls_flower->classid)
return ice_handle_tclass_action(vsi, cls_flower, fltr);
if (!flow_action_has_entries(flow_action))
return -EINVAL;
flow_action_for_each(i, act, flow_action) {
if (ice_is_eswitch_mode_switchdev(vsi->back))
err = ice_eswitch_tc_parse_action(filter_dev, fltr, act);
else
err = ice_tc_parse_action(vsi, fltr, act);
if (err)
return err;
continue;
}
return 0;
}
/**
* ice_del_tc_fltr - deletes a filter from HW table
* @vsi: Pointer to VSI
* @fltr: Pointer to struct ice_tc_flower_fltr
*
* This function deletes a filter from HW table and manages book-keeping
*/
static int ice_del_tc_fltr(struct ice_vsi *vsi, struct ice_tc_flower_fltr *fltr)
{
struct ice_rule_query_data rule_rem;
struct ice_pf *pf = vsi->back;
int err;
rule_rem.rid = fltr->rid;
rule_rem.rule_id = fltr->rule_id;
rule_rem.vsi_handle = fltr->dest_vsi_handle;
err = ice_rem_adv_rule_by_id(&pf->hw, &rule_rem);
if (err) {
if (err == -ENOENT) {
NL_SET_ERR_MSG_MOD(fltr->extack, "Filter does not exist");
return -ENOENT;
}
NL_SET_ERR_MSG_MOD(fltr->extack, "Failed to delete TC flower filter");
return -EIO;
}
/* update advanced switch filter count for destination
* VSI if filter destination was VSI
*/
if (fltr->dest_vsi) {
if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
fltr->dest_vsi->num_chnl_fltr--;
/* keeps track of channel filters for PF VSI */
if (vsi->type == ICE_VSI_PF &&
(fltr->flags & (ICE_TC_FLWR_FIELD_DST_MAC |
ICE_TC_FLWR_FIELD_ENC_DST_MAC)))
pf->num_dmac_chnl_fltrs--;
}
}
return 0;
}
/**
* ice_add_tc_fltr - adds a TC flower filter
* @netdev: Pointer to netdev
* @vsi: Pointer to VSI
* @f: Pointer to flower offload structure
* @__fltr: Pointer to struct ice_tc_flower_fltr
*
* This function parses TC-flower input fields, parses action,
* and adds a filter.
*/
static int
ice_add_tc_fltr(struct net_device *netdev, struct ice_vsi *vsi,
struct flow_cls_offload *f,
struct ice_tc_flower_fltr **__fltr)
{
struct ice_tc_flower_fltr *fltr;
int err;
/* by default, set output to be INVALID */
*__fltr = NULL;
fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
if (!fltr)
return -ENOMEM;
fltr->cookie = f->cookie;
fltr->extack = f->common.extack;
fltr->src_vsi = vsi;
INIT_HLIST_NODE(&fltr->tc_flower_node);
err = ice_parse_cls_flower(netdev, vsi, f, fltr);
if (err < 0)
goto err;
err = ice_parse_tc_flower_actions(netdev, vsi, f, fltr);
if (err < 0)
goto err;
err = ice_add_switch_fltr(vsi, fltr);
if (err < 0)
goto err;
/* return the newly created filter */
*__fltr = fltr;
return 0;
err:
kfree(fltr);
return err;
}
/**
* ice_find_tc_flower_fltr - Find the TC flower filter in the list
* @pf: Pointer to PF
* @cookie: filter specific cookie
*/
static struct ice_tc_flower_fltr *
ice_find_tc_flower_fltr(struct ice_pf *pf, unsigned long cookie)
{
struct ice_tc_flower_fltr *fltr;
hlist_for_each_entry(fltr, &pf->tc_flower_fltr_list, tc_flower_node)
if (cookie == fltr->cookie)
return fltr;
return NULL;
}
/**
* ice_add_cls_flower - add TC flower filters
* @netdev: Pointer to filter device
* @vsi: Pointer to VSI
* @cls_flower: Pointer to flower offload structure
*/
int
ice_add_cls_flower(struct net_device *netdev, struct ice_vsi *vsi,
struct flow_cls_offload *cls_flower)
{
struct netlink_ext_ack *extack = cls_flower->common.extack;
struct net_device *vsi_netdev = vsi->netdev;
struct ice_tc_flower_fltr *fltr;
struct ice_pf *pf = vsi->back;
int err;
if (ice_is_reset_in_progress(pf->state))
return -EBUSY;
if (test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
return -EINVAL;
if (ice_is_port_repr_netdev(netdev))
vsi_netdev = netdev;
if (!(vsi_netdev->features & NETIF_F_HW_TC) &&
!test_bit(ICE_FLAG_CLS_FLOWER, pf->flags)) {
/* Based on TC indirect notifications from kernel, all ice
* devices get an instance of rule from higher level device.
* Avoid triggering explicit error in this case.
*/
if (netdev == vsi_netdev)
NL_SET_ERR_MSG_MOD(extack, "can't apply TC flower filters, turn ON hw-tc-offload and try again");
return -EINVAL;
}
/* avoid duplicate entries, if exists - return error */
fltr = ice_find_tc_flower_fltr(pf, cls_flower->cookie);
if (fltr) {
NL_SET_ERR_MSG_MOD(extack, "filter cookie already exists, ignoring");
return -EEXIST;
}
/* prep and add TC-flower filter in HW */
err = ice_add_tc_fltr(netdev, vsi, cls_flower, &fltr);
if (err)
return err;
/* add filter into an ordered list */
hlist_add_head(&fltr->tc_flower_node, &pf->tc_flower_fltr_list);
return 0;
}
/**
* ice_del_cls_flower - delete TC flower filters
* @vsi: Pointer to VSI
* @cls_flower: Pointer to struct flow_cls_offload
*/
int
ice_del_cls_flower(struct ice_vsi *vsi, struct flow_cls_offload *cls_flower)
{
struct ice_tc_flower_fltr *fltr;
struct ice_pf *pf = vsi->back;
int err;
/* find filter */
fltr = ice_find_tc_flower_fltr(pf, cls_flower->cookie);
if (!fltr) {
if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) &&
hlist_empty(&pf->tc_flower_fltr_list))
return 0;
NL_SET_ERR_MSG_MOD(cls_flower->common.extack, "failed to delete TC flower filter because unable to find it");
return -EINVAL;
}
fltr->extack = cls_flower->common.extack;
/* delete filter from HW */
err = ice_del_tc_fltr(vsi, fltr);
if (err)
return err;
/* delete filter from an ordered list */
hlist_del(&fltr->tc_flower_node);
/* free the filter node */
kfree(fltr);
return 0;
}
/**
* ice_replay_tc_fltrs - replay TC filters
* @pf: pointer to PF struct
*/
void ice_replay_tc_fltrs(struct ice_pf *pf)
{
struct ice_tc_flower_fltr *fltr;
struct hlist_node *node;
hlist_for_each_entry_safe(fltr, node,
&pf->tc_flower_fltr_list,
tc_flower_node) {
fltr->extack = NULL;
ice_add_switch_fltr(fltr->src_vsi, fltr);
}
}