// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
/*
* This source file contains Tegra210 supported video formats,
* VI and CSI SoC specific data, operations and registers accessors.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/delay.h>
#include <linux/host1x.h>
#include <linux/kthread.h>
#include "csi.h"
#include "vi.h"
#define TEGRA210_MIN_WIDTH 32U
#define TEGRA210_MAX_WIDTH 32768U
#define TEGRA210_MIN_HEIGHT 32U
#define TEGRA210_MAX_HEIGHT 32768U
#define SURFACE_ALIGN_BYTES 64
#define TEGRA_VI_SYNCPT_WAIT_TIMEOUT msecs_to_jiffies(200)
/* Tegra210 VI registers */
#define TEGRA_VI_CFG_VI_INCR_SYNCPT 0x000
#define VI_CFG_VI_INCR_SYNCPT_COND(x) (((x) & 0xff) << 8)
#define VI_CSI_PP_FRAME_START(port) (5 + (port) * 4)
#define VI_CSI_MW_ACK_DONE(port) (7 + (port) * 4)
#define TEGRA_VI_CFG_VI_INCR_SYNCPT_CNTRL 0x004
#define VI_INCR_SYNCPT_NO_STALL BIT(8)
#define TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR 0x008
#define TEGRA_VI_CFG_CG_CTRL 0x0b8
#define VI_CG_2ND_LEVEL_EN 0x1
/* Tegra210 VI CSI registers */
#define TEGRA_VI_CSI_SW_RESET 0x000
#define TEGRA_VI_CSI_SINGLE_SHOT 0x004
#define SINGLE_SHOT_CAPTURE 0x1
#define TEGRA_VI_CSI_IMAGE_DEF 0x00c
#define BYPASS_PXL_TRANSFORM_OFFSET 24
#define IMAGE_DEF_FORMAT_OFFSET 16
#define IMAGE_DEF_DEST_MEM 0x1
#define TEGRA_VI_CSI_IMAGE_SIZE 0x018
#define IMAGE_SIZE_HEIGHT_OFFSET 16
#define TEGRA_VI_CSI_IMAGE_SIZE_WC 0x01c
#define TEGRA_VI_CSI_IMAGE_DT 0x020
#define TEGRA_VI_CSI_SURFACE0_OFFSET_MSB 0x024
#define TEGRA_VI_CSI_SURFACE0_OFFSET_LSB 0x028
#define TEGRA_VI_CSI_SURFACE1_OFFSET_MSB 0x02c
#define TEGRA_VI_CSI_SURFACE1_OFFSET_LSB 0x030
#define TEGRA_VI_CSI_SURFACE2_OFFSET_MSB 0x034
#define TEGRA_VI_CSI_SURFACE2_OFFSET_LSB 0x038
#define TEGRA_VI_CSI_SURFACE0_STRIDE 0x054
#define TEGRA_VI_CSI_SURFACE1_STRIDE 0x058
#define TEGRA_VI_CSI_SURFACE2_STRIDE 0x05c
#define TEGRA_VI_CSI_SURFACE_HEIGHT0 0x060
#define TEGRA_VI_CSI_ERROR_STATUS 0x084
/* Tegra210 CSI Pixel Parser registers: Starts from 0x838, offset 0x0 */
#define TEGRA_CSI_INPUT_STREAM_CONTROL 0x000
#define CSI_SKIP_PACKET_THRESHOLD_OFFSET 16
#define TEGRA_CSI_PIXEL_STREAM_CONTROL0 0x004
#define CSI_PP_PACKET_HEADER_SENT BIT(4)
#define CSI_PP_DATA_IDENTIFIER_ENABLE BIT(5)
#define CSI_PP_WORD_COUNT_SELECT_HEADER BIT(6)
#define CSI_PP_CRC_CHECK_ENABLE BIT(7)
#define CSI_PP_WC_CHECK BIT(8)
#define CSI_PP_OUTPUT_FORMAT_STORE (0x3 << 16)
#define CSI_PPA_PAD_LINE_NOPAD (0x2 << 24)
#define CSI_PP_HEADER_EC_DISABLE (0x1 << 27)
#define CSI_PPA_PAD_FRAME_NOPAD (0x2 << 28)
#define TEGRA_CSI_PIXEL_STREAM_CONTROL1 0x008
#define CSI_PP_TOP_FIELD_FRAME_OFFSET 0
#define CSI_PP_TOP_FIELD_FRAME_MASK_OFFSET 4
#define TEGRA_CSI_PIXEL_STREAM_GAP 0x00c
#define PP_FRAME_MIN_GAP_OFFSET 16
#define TEGRA_CSI_PIXEL_STREAM_PP_COMMAND 0x010
#define CSI_PP_ENABLE 0x1
#define CSI_PP_DISABLE 0x2
#define CSI_PP_RST 0x3
#define CSI_PP_SINGLE_SHOT_ENABLE (0x1 << 2)
#define CSI_PP_START_MARKER_FRAME_MAX_OFFSET 12
#define TEGRA_CSI_PIXEL_STREAM_EXPECTED_FRAME 0x014
#define TEGRA_CSI_PIXEL_PARSER_INTERRUPT_MASK 0x018
#define TEGRA_CSI_PIXEL_PARSER_STATUS 0x01c
/* Tegra210 CSI PHY registers */
/* CSI_PHY_CIL_COMMAND_0 offset 0x0d0 from TEGRA_CSI_PIXEL_PARSER_0_BASE */
#define TEGRA_CSI_PHY_CIL_COMMAND 0x0d0
#define CSI_A_PHY_CIL_NOP 0x0
#define CSI_A_PHY_CIL_ENABLE 0x1
#define CSI_A_PHY_CIL_DISABLE 0x2
#define CSI_A_PHY_CIL_ENABLE_MASK 0x3
#define CSI_B_PHY_CIL_NOP (0x0 << 8)
#define CSI_B_PHY_CIL_ENABLE (0x1 << 8)
#define CSI_B_PHY_CIL_DISABLE (0x2 << 8)
#define CSI_B_PHY_CIL_ENABLE_MASK (0x3 << 8)
#define TEGRA_CSI_CIL_PAD_CONFIG0 0x000
#define BRICK_CLOCK_A_4X (0x1 << 16)
#define BRICK_CLOCK_B_4X (0x2 << 16)
#define TEGRA_CSI_CIL_PAD_CONFIG1 0x004
#define TEGRA_CSI_CIL_PHY_CONTROL 0x008
#define CLK_SETTLE_MASK GENMASK(13, 8)
#define THS_SETTLE_MASK GENMASK(5, 0)
#define TEGRA_CSI_CIL_INTERRUPT_MASK 0x00c
#define TEGRA_CSI_CIL_STATUS 0x010
#define TEGRA_CSI_CILX_STATUS 0x014
#define TEGRA_CSI_CIL_SW_SENSOR_RESET 0x020
#define TEGRA_CSI_PATTERN_GENERATOR_CTRL 0x000
#define PG_MODE_OFFSET 2
#define PG_ENABLE 0x1
#define PG_DISABLE 0x0
#define TEGRA_CSI_PG_BLANK 0x004
#define PG_VBLANK_OFFSET 16
#define TEGRA_CSI_PG_PHASE 0x008
#define TEGRA_CSI_PG_RED_FREQ 0x00c
#define PG_RED_VERT_INIT_FREQ_OFFSET 16
#define PG_RED_HOR_INIT_FREQ_OFFSET 0
#define TEGRA_CSI_PG_RED_FREQ_RATE 0x010
#define TEGRA_CSI_PG_GREEN_FREQ 0x014
#define PG_GREEN_VERT_INIT_FREQ_OFFSET 16
#define PG_GREEN_HOR_INIT_FREQ_OFFSET 0
#define TEGRA_CSI_PG_GREEN_FREQ_RATE 0x018
#define TEGRA_CSI_PG_BLUE_FREQ 0x01c
#define PG_BLUE_VERT_INIT_FREQ_OFFSET 16
#define PG_BLUE_HOR_INIT_FREQ_OFFSET 0
#define TEGRA_CSI_PG_BLUE_FREQ_RATE 0x020
#define TEGRA_CSI_PG_AOHDR 0x024
#define TEGRA_CSI_CSI_SW_STATUS_RESET 0x214
#define TEGRA_CSI_CLKEN_OVERRIDE 0x218
#define TEGRA210_CSI_PORT_OFFSET 0x34
#define TEGRA210_CSI_CIL_OFFSET 0x0f4
#define TEGRA210_CSI_TPG_OFFSET 0x18c
#define CSI_PP_OFFSET(block) ((block) * 0x800)
#define TEGRA210_VI_CSI_BASE(x) (0x100 + (x) * 0x100)
/* Tegra210 VI registers accessors */
static void tegra_vi_write(struct tegra_vi_channel *chan, unsigned int addr,
u32 val)
{
writel_relaxed(val, chan->vi->iomem + addr);
}
static u32 tegra_vi_read(struct tegra_vi_channel *chan, unsigned int addr)
{
return readl_relaxed(chan->vi->iomem + addr);
}
/* Tegra210 VI_CSI registers accessors */
static void vi_csi_write(struct tegra_vi_channel *chan, u8 portno,
unsigned int addr, u32 val)
{
void __iomem *vi_csi_base;
vi_csi_base = chan->vi->iomem + TEGRA210_VI_CSI_BASE(portno);
writel_relaxed(val, vi_csi_base + addr);
}
static u32 vi_csi_read(struct tegra_vi_channel *chan, u8 portno,
unsigned int addr)
{
void __iomem *vi_csi_base;
vi_csi_base = chan->vi->iomem + TEGRA210_VI_CSI_BASE(portno);
return readl_relaxed(vi_csi_base + addr);
}
/*
* Tegra210 VI channel capture operations
*/
static int tegra210_channel_host1x_syncpt_init(struct tegra_vi_channel *chan)
{
struct tegra_vi *vi = chan->vi;
unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
struct host1x_syncpt *fs_sp;
struct host1x_syncpt *mw_sp;
int ret, i;
for (i = 0; i < chan->numgangports; i++) {
fs_sp = host1x_syncpt_request(&vi->client, flags);
if (!fs_sp) {
dev_err(vi->dev, "failed to request frame start syncpoint\n");
ret = -ENOMEM;
goto free_syncpts;
}
mw_sp = host1x_syncpt_request(&vi->client, flags);
if (!mw_sp) {
dev_err(vi->dev, "failed to request memory ack syncpoint\n");
host1x_syncpt_put(fs_sp);
ret = -ENOMEM;
goto free_syncpts;
}
chan->frame_start_sp[i] = fs_sp;
chan->mw_ack_sp[i] = mw_sp;
spin_lock_init(&chan->sp_incr_lock[i]);
}
return 0;
free_syncpts:
for (i = 0; i < chan->numgangports; i++) {
host1x_syncpt_put(chan->mw_ack_sp[i]);
host1x_syncpt_put(chan->frame_start_sp[i]);
}
return ret;
}
static void tegra210_channel_host1x_syncpt_free(struct tegra_vi_channel *chan)
{
int i;
for (i = 0; i < chan->numgangports; i++) {
host1x_syncpt_put(chan->mw_ack_sp[i]);
host1x_syncpt_put(chan->frame_start_sp[i]);
}
}
static void tegra210_fmt_align(struct v4l2_pix_format *pix, unsigned int bpp)
{
unsigned int min_bpl;
unsigned int max_bpl;
unsigned int bpl;
/*
* The transfer alignment requirements are expressed in bytes.
* Clamp the requested width and height to the limits.
*/
pix->width = clamp(pix->width, TEGRA210_MIN_WIDTH, TEGRA210_MAX_WIDTH);
pix->height = clamp(pix->height, TEGRA210_MIN_HEIGHT, TEGRA210_MAX_HEIGHT);
/* Clamp the requested bytes per line value. If the maximum bytes per
* line value is zero, the module doesn't support user configurable
* line sizes. Override the requested value with the minimum in that
* case.
*/
min_bpl = pix->width * bpp;
max_bpl = rounddown(TEGRA210_MAX_WIDTH, SURFACE_ALIGN_BYTES);
bpl = roundup(pix->bytesperline, SURFACE_ALIGN_BYTES);
pix->bytesperline = clamp(bpl, min_bpl, max_bpl);
pix->sizeimage = pix->bytesperline * pix->height;
if (pix->pixelformat == V4L2_PIX_FMT_NV16)
pix->sizeimage *= 2;
}
static int tegra_channel_capture_setup(struct tegra_vi_channel *chan,
u8 portno)
{
u32 height = chan->format.height;
u32 width = chan->format.width;
u32 format = chan->fmtinfo->img_fmt;
u32 data_type = chan->fmtinfo->img_dt;
u32 word_count = (width * chan->fmtinfo->bit_width) / 8;
u32 bypass_pixel_transform = BIT(BYPASS_PXL_TRANSFORM_OFFSET);
/*
* VI Pixel transformation unit converts source pixels data format
* into selected destination pixel format and aligns properly while
* interfacing with memory packer.
* This pixel transformation should be enabled for YUV and RGB
* formats and should be bypassed for RAW formats as RAW formats
* only support direct to memory.
*/
if (chan->pg_mode || data_type == TEGRA_IMAGE_DT_YUV422_8 ||
data_type == TEGRA_IMAGE_DT_RGB888)
bypass_pixel_transform = 0;
/*
* For x8 source streaming, the source image is split onto two x4 ports
* with left half to first x4 port and right half to second x4 port.
* So, use split width and corresponding word count for each x4 port.
*/
if (chan->numgangports > 1) {
width = width >> 1;
word_count = (width * chan->fmtinfo->bit_width) / 8;
}
vi_csi_write(chan, portno, TEGRA_VI_CSI_ERROR_STATUS, 0xffffffff);
vi_csi_write(chan, portno, TEGRA_VI_CSI_IMAGE_DEF,
bypass_pixel_transform |
(format << IMAGE_DEF_FORMAT_OFFSET) |
IMAGE_DEF_DEST_MEM);
vi_csi_write(chan, portno, TEGRA_VI_CSI_IMAGE_DT, data_type);
vi_csi_write(chan, portno, TEGRA_VI_CSI_IMAGE_SIZE_WC, word_count);
vi_csi_write(chan, portno, TEGRA_VI_CSI_IMAGE_SIZE,
(height << IMAGE_SIZE_HEIGHT_OFFSET) | width);
return 0;
}
static void tegra_channel_vi_soft_reset(struct tegra_vi_channel *chan,
u8 portno)
{
/* disable clock gating to enable continuous clock */
tegra_vi_write(chan, TEGRA_VI_CFG_CG_CTRL, 0);
/*
* Soft reset memory client interface, pixel format logic, sensor
* control logic, and a shadow copy logic to bring VI to clean state.
*/
vi_csi_write(chan, portno, TEGRA_VI_CSI_SW_RESET, 0xf);
usleep_range(100, 200);
vi_csi_write(chan, portno, TEGRA_VI_CSI_SW_RESET, 0x0);
/* enable back VI clock gating */
tegra_vi_write(chan, TEGRA_VI_CFG_CG_CTRL, VI_CG_2ND_LEVEL_EN);
}
static void tegra_channel_capture_error_recover(struct tegra_vi_channel *chan,
u8 portno)
{
struct v4l2_subdev *subdev;
u32 val;
/*
* Recover VI and CSI hardware blocks in case of missing frame start
* events due to source not streaming or noisy csi inputs from the
* external source or many outstanding frame start or MW_ACK_DONE
* events which can cause CSI and VI hardware hang.
* This helps to have a clean capture for next frame.
*/
val = vi_csi_read(chan, portno, TEGRA_VI_CSI_ERROR_STATUS);
dev_dbg(&chan->video.dev, "TEGRA_VI_CSI_ERROR_STATUS 0x%08x\n", val);
vi_csi_write(chan, portno, TEGRA_VI_CSI_ERROR_STATUS, val);
val = tegra_vi_read(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR);
dev_dbg(&chan->video.dev,
"TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR 0x%08x\n", val);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR, val);
/* recover VI by issuing software reset and re-setup for capture */
tegra_channel_vi_soft_reset(chan, portno);
tegra_channel_capture_setup(chan, portno);
/* recover CSI block */
subdev = tegra_channel_get_remote_csi_subdev(chan);
tegra_csi_error_recover(subdev);
}
static struct tegra_channel_buffer *
dequeue_buf_done(struct tegra_vi_channel *chan)
{
struct tegra_channel_buffer *buf = NULL;
spin_lock(&chan->done_lock);
if (list_empty(&chan->done)) {
spin_unlock(&chan->done_lock);
return NULL;
}
buf = list_first_entry(&chan->done,
struct tegra_channel_buffer, queue);
if (buf)
list_del_init(&buf->queue);
spin_unlock(&chan->done_lock);
return buf;
}
static void release_buffer(struct tegra_vi_channel *chan,
struct tegra_channel_buffer *buf,
enum vb2_buffer_state state)
{
struct vb2_v4l2_buffer *vb = &buf->buf;
vb->sequence = chan->sequence++;
vb->field = V4L2_FIELD_NONE;
vb->vb2_buf.timestamp = ktime_get_ns();
vb2_buffer_done(&vb->vb2_buf, state);
}
static void tegra_channel_vi_buffer_setup(struct tegra_vi_channel *chan,
u8 portno, u32 buf_offset,
struct tegra_channel_buffer *buf)
{
int bytesperline = chan->format.bytesperline;
u32 sizeimage = chan->format.sizeimage;
/* program buffer address by using surface 0 */
vi_csi_write(chan, portno, TEGRA_VI_CSI_SURFACE0_OFFSET_MSB,
((u64)buf->addr + buf_offset) >> 32);
vi_csi_write(chan, portno, TEGRA_VI_CSI_SURFACE0_OFFSET_LSB,
buf->addr + buf_offset);
vi_csi_write(chan, portno, TEGRA_VI_CSI_SURFACE0_STRIDE, bytesperline);
if (chan->fmtinfo->fourcc != V4L2_PIX_FMT_NV16)
return;
/*
* Program surface 1 for UV plane with offset sizeimage from Y plane.
*/
vi_csi_write(chan, portno, TEGRA_VI_CSI_SURFACE1_OFFSET_MSB,
(((u64)buf->addr + sizeimage / 2) + buf_offset) >> 32);
vi_csi_write(chan, portno, TEGRA_VI_CSI_SURFACE1_OFFSET_LSB,
buf->addr + sizeimage / 2 + buf_offset);
vi_csi_write(chan, portno, TEGRA_VI_CSI_SURFACE1_STRIDE, bytesperline);
}
static int tegra_channel_capture_frame(struct tegra_vi_channel *chan,
struct tegra_channel_buffer *buf)
{
u32 thresh, value, frame_start, mw_ack_done;
u32 fs_thresh[GANG_PORTS_MAX];
u8 *portnos = chan->portnos;
int gang_bpl = (chan->format.width >> 1) * chan->fmtinfo->bpp;
u32 buf_offset;
bool capture_timedout = false;
int err, i;
for (i = 0; i < chan->numgangports; i++) {
/*
* Align buffers side-by-side for all consecutive x4 ports
* in gang ports using bytes per line based on source split
* width.
*/
buf_offset = i * roundup(gang_bpl, SURFACE_ALIGN_BYTES);
tegra_channel_vi_buffer_setup(chan, portnos[i], buf_offset,
buf);
/*
* Tegra VI block interacts with host1x syncpt to synchronize
* programmed condition and hardware operation for capture.
* Frame start and Memory write acknowledge syncpts has their
* own FIFO of depth 2.
*
* Syncpoint trigger conditions set through VI_INCR_SYNCPT
* register are added to HW syncpt FIFO and when HW triggers,
* syncpt condition is removed from the FIFO and counter at
* syncpoint index will be incremented by the hardware and
* software can wait for counter to reach threshold to
* synchronize capturing frame with hardware capture events.
*/
/* increase channel syncpoint threshold for FRAME_START */
thresh = host1x_syncpt_incr_max(chan->frame_start_sp[i], 1);
fs_thresh[i] = thresh;
/* Program FRAME_START trigger condition syncpt request */
frame_start = VI_CSI_PP_FRAME_START(portnos[i]);
value = VI_CFG_VI_INCR_SYNCPT_COND(frame_start) |
host1x_syncpt_id(chan->frame_start_sp[i]);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT, value);
/* increase channel syncpoint threshold for MW_ACK_DONE */
thresh = host1x_syncpt_incr_max(chan->mw_ack_sp[i], 1);
buf->mw_ack_sp_thresh[i] = thresh;
/* Program MW_ACK_DONE trigger condition syncpt request */
mw_ack_done = VI_CSI_MW_ACK_DONE(portnos[i]);
value = VI_CFG_VI_INCR_SYNCPT_COND(mw_ack_done) |
host1x_syncpt_id(chan->mw_ack_sp[i]);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT, value);
}
/* enable single shot capture after all ganged ports are ready */
for (i = 0; i < chan->numgangports; i++)
vi_csi_write(chan, portnos[i], TEGRA_VI_CSI_SINGLE_SHOT,
SINGLE_SHOT_CAPTURE);
for (i = 0; i < chan->numgangports; i++) {
/*
* Wait for syncpt counter to reach frame start event threshold
*/
err = host1x_syncpt_wait(chan->frame_start_sp[i], fs_thresh[i],
TEGRA_VI_SYNCPT_WAIT_TIMEOUT, &value);
if (err) {
capture_timedout = true;
/* increment syncpoint counter for timedout events */
host1x_syncpt_incr(chan->frame_start_sp[i]);
spin_lock(&chan->sp_incr_lock[i]);
host1x_syncpt_incr(chan->mw_ack_sp[i]);
spin_unlock(&chan->sp_incr_lock[i]);
/* clear errors and recover */
tegra_channel_capture_error_recover(chan, portnos[i]);
}
}
if (capture_timedout) {
dev_err_ratelimited(&chan->video.dev,
"frame start syncpt timeout: %d\n", err);
release_buffer(chan, buf, VB2_BUF_STATE_ERROR);
return err;
}
/* move buffer to capture done queue */
spin_lock(&chan->done_lock);
list_add_tail(&buf->queue, &chan->done);
spin_unlock(&chan->done_lock);
/* wait up kthread for capture done */
wake_up_interruptible(&chan->done_wait);
return 0;
}
static void tegra_channel_capture_done(struct tegra_vi_channel *chan,
struct tegra_channel_buffer *buf)
{
enum vb2_buffer_state state = VB2_BUF_STATE_DONE;
u32 value;
bool capture_timedout = false;
int ret, i;
for (i = 0; i < chan->numgangports; i++) {
/*
* Wait for syncpt counter to reach MW_ACK_DONE event threshold
*/
ret = host1x_syncpt_wait(chan->mw_ack_sp[i],
buf->mw_ack_sp_thresh[i],
TEGRA_VI_SYNCPT_WAIT_TIMEOUT, &value);
if (ret) {
capture_timedout = true;
state = VB2_BUF_STATE_ERROR;
/* increment syncpoint counter for timedout event */
spin_lock(&chan->sp_incr_lock[i]);
host1x_syncpt_incr(chan->mw_ack_sp[i]);
spin_unlock(&chan->sp_incr_lock[i]);
}
}
if (capture_timedout)
dev_err_ratelimited(&chan->video.dev,
"MW_ACK_DONE syncpt timeout: %d\n", ret);
release_buffer(chan, buf, state);
}
static int chan_capture_kthread_start(void *data)
{
struct tegra_vi_channel *chan = data;
struct tegra_channel_buffer *buf;
unsigned int retries = 0;
int err = 0;
while (1) {
/*
* Source is not streaming if error is non-zero.
* So, do not dequeue buffers on error and let the thread sleep
* till kthread stop signal is received.
*/
wait_event_interruptible(chan->start_wait,
kthread_should_stop() ||
(!list_empty(&chan->capture) &&
!err));
if (kthread_should_stop())
break;
/* dequeue the buffer and start capture */
spin_lock(&chan->start_lock);
if (list_empty(&chan->capture)) {
spin_unlock(&chan->start_lock);
continue;
}
buf = list_first_entry(&chan->capture,
struct tegra_channel_buffer, queue);
list_del_init(&buf->queue);
spin_unlock(&chan->start_lock);
err = tegra_channel_capture_frame(chan, buf);
if (!err) {
retries = 0;
continue;
}
if (retries++ > chan->syncpt_timeout_retry)
vb2_queue_error(&chan->queue);
else
err = 0;
}
return 0;
}
static int chan_capture_kthread_finish(void *data)
{
struct tegra_vi_channel *chan = data;
struct tegra_channel_buffer *buf;
while (1) {
wait_event_interruptible(chan->done_wait,
!list_empty(&chan->done) ||
kthread_should_stop());
/* dequeue buffers and finish capture */
buf = dequeue_buf_done(chan);
while (buf) {
tegra_channel_capture_done(chan, buf);
buf = dequeue_buf_done(chan);
}
if (kthread_should_stop())
break;
}
return 0;
}
static int tegra210_vi_start_streaming(struct vb2_queue *vq, u32 count)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vq);
struct media_pipeline *pipe = &chan->video.pipe;
u32 val;
u8 *portnos = chan->portnos;
int ret, i;
tegra_vi_write(chan, TEGRA_VI_CFG_CG_CTRL, VI_CG_2ND_LEVEL_EN);
/* clear syncpt errors */
val = tegra_vi_read(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR, val);
/*
* Sync point FIFO full stalls the host interface.
* Setting NO_STALL will drop INCR_SYNCPT methods when fifos are
* full and the corresponding condition bits in INCR_SYNCPT_ERROR
* register will be set.
* This allows SW to process error recovery.
*/
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_CNTRL,
VI_INCR_SYNCPT_NO_STALL);
/* start the pipeline */
ret = video_device_pipeline_start(&chan->video, pipe);
if (ret < 0)
goto error_pipeline_start;
/* clear csi errors and do capture setup for all ports in gang mode */
for (i = 0; i < chan->numgangports; i++) {
val = vi_csi_read(chan, portnos[i], TEGRA_VI_CSI_ERROR_STATUS);
vi_csi_write(chan, portnos[i], TEGRA_VI_CSI_ERROR_STATUS, val);
tegra_channel_capture_setup(chan, portnos[i]);
}
ret = tegra_channel_set_stream(chan, true);
if (ret < 0)
goto error_set_stream;
chan->sequence = 0;
/* start kthreads to capture data to buffer and return them */
chan->kthread_start_capture = kthread_run(chan_capture_kthread_start,
chan, "%s:0",
chan->video.name);
if (IS_ERR(chan->kthread_start_capture)) {
ret = PTR_ERR(chan->kthread_start_capture);
chan->kthread_start_capture = NULL;
dev_err(&chan->video.dev,
"failed to run capture start kthread: %d\n", ret);
goto error_kthread_start;
}
chan->kthread_finish_capture = kthread_run(chan_capture_kthread_finish,
chan, "%s:1",
chan->video.name);
if (IS_ERR(chan->kthread_finish_capture)) {
ret = PTR_ERR(chan->kthread_finish_capture);
chan->kthread_finish_capture = NULL;
dev_err(&chan->video.dev,
"failed to run capture finish kthread: %d\n", ret);
goto error_kthread_done;
}
return 0;
error_kthread_done:
kthread_stop(chan->kthread_start_capture);
error_kthread_start:
tegra_channel_set_stream(chan, false);
error_set_stream:
video_device_pipeline_stop(&chan->video);
error_pipeline_start:
tegra_channel_release_buffers(chan, VB2_BUF_STATE_QUEUED);
return ret;
}
static void tegra210_vi_stop_streaming(struct vb2_queue *vq)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vq);
if (chan->kthread_start_capture) {
kthread_stop(chan->kthread_start_capture);
chan->kthread_start_capture = NULL;
}
if (chan->kthread_finish_capture) {
kthread_stop(chan->kthread_finish_capture);
chan->kthread_finish_capture = NULL;
}
tegra_channel_release_buffers(chan, VB2_BUF_STATE_ERROR);
tegra_channel_set_stream(chan, false);
video_device_pipeline_stop(&chan->video);
}
/*
* Tegra210 VI Pixel memory format enum.
* These format enum value gets programmed into corresponding Tegra VI
* channel register bits.
*/
enum tegra210_image_format {
TEGRA210_IMAGE_FORMAT_T_L8 = 16,
TEGRA210_IMAGE_FORMAT_T_R16_I = 32,
TEGRA210_IMAGE_FORMAT_T_B5G6R5,
TEGRA210_IMAGE_FORMAT_T_R5G6B5,
TEGRA210_IMAGE_FORMAT_T_A1B5G5R5,
TEGRA210_IMAGE_FORMAT_T_A1R5G5B5,
TEGRA210_IMAGE_FORMAT_T_B5G5R5A1,
TEGRA210_IMAGE_FORMAT_T_R5G5B5A1,
TEGRA210_IMAGE_FORMAT_T_A4B4G4R4,
TEGRA210_IMAGE_FORMAT_T_A4R4G4B4,
TEGRA210_IMAGE_FORMAT_T_B4G4R4A4,
TEGRA210_IMAGE_FORMAT_T_R4G4B4A4,
TEGRA210_IMAGE_FORMAT_T_A8B8G8R8 = 64,
TEGRA210_IMAGE_FORMAT_T_A8R8G8B8,
TEGRA210_IMAGE_FORMAT_T_B8G8R8A8,
TEGRA210_IMAGE_FORMAT_T_R8G8B8A8,
TEGRA210_IMAGE_FORMAT_T_A2B10G10R10,
TEGRA210_IMAGE_FORMAT_T_A2R10G10B10,
TEGRA210_IMAGE_FORMAT_T_B10G10R10A2,
TEGRA210_IMAGE_FORMAT_T_R10G10B10A2,
TEGRA210_IMAGE_FORMAT_T_A8Y8U8V8 = 193,
TEGRA210_IMAGE_FORMAT_T_V8U8Y8A8,
TEGRA210_IMAGE_FORMAT_T_A2Y10U10V10 = 197,
TEGRA210_IMAGE_FORMAT_T_V10U10Y10A2,
TEGRA210_IMAGE_FORMAT_T_Y8_U8__Y8_V8,
TEGRA210_IMAGE_FORMAT_T_Y8_V8__Y8_U8,
TEGRA210_IMAGE_FORMAT_T_U8_Y8__V8_Y8,
TEGRA210_IMAGE_FORMAT_T_V8_Y8__U8_Y8,
TEGRA210_IMAGE_FORMAT_T_Y8__U8__V8_N444 = 224,
TEGRA210_IMAGE_FORMAT_T_Y8__U8V8_N444,
TEGRA210_IMAGE_FORMAT_T_Y8__V8U8_N444,
TEGRA210_IMAGE_FORMAT_T_Y8__U8__V8_N422,
TEGRA210_IMAGE_FORMAT_T_Y8__U8V8_N422,
TEGRA210_IMAGE_FORMAT_T_Y8__V8U8_N422,
TEGRA210_IMAGE_FORMAT_T_Y8__U8__V8_N420,
TEGRA210_IMAGE_FORMAT_T_Y8__U8V8_N420,
TEGRA210_IMAGE_FORMAT_T_Y8__V8U8_N420,
TEGRA210_IMAGE_FORMAT_T_X2LC10LB10LA10,
TEGRA210_IMAGE_FORMAT_T_A2R6R6R6R6R6,
};
#define TEGRA210_VIDEO_FMT(DATA_TYPE, BIT_WIDTH, MBUS_CODE, BPP, \
FORMAT, FOURCC) \
{ \
TEGRA_IMAGE_DT_##DATA_TYPE, \
BIT_WIDTH, \
MEDIA_BUS_FMT_##MBUS_CODE, \
BPP, \
TEGRA210_IMAGE_FORMAT_##FORMAT, \
V4L2_PIX_FMT_##FOURCC, \
}
/* Tegra210 supported video formats */
static const struct tegra_video_format tegra210_video_formats[] = {
/* RAW 8 */
TEGRA210_VIDEO_FMT(RAW8, 8, SRGGB8_1X8, 1, T_L8, SRGGB8),
TEGRA210_VIDEO_FMT(RAW8, 8, SGRBG8_1X8, 1, T_L8, SGRBG8),
TEGRA210_VIDEO_FMT(RAW8, 8, SGBRG8_1X8, 1, T_L8, SGBRG8),
TEGRA210_VIDEO_FMT(RAW8, 8, SBGGR8_1X8, 1, T_L8, SBGGR8),
/* RAW 10 */
TEGRA210_VIDEO_FMT(RAW10, 10, SRGGB10_1X10, 2, T_R16_I, SRGGB10),
TEGRA210_VIDEO_FMT(RAW10, 10, SGRBG10_1X10, 2, T_R16_I, SGRBG10),
TEGRA210_VIDEO_FMT(RAW10, 10, SGBRG10_1X10, 2, T_R16_I, SGBRG10),
TEGRA210_VIDEO_FMT(RAW10, 10, SBGGR10_1X10, 2, T_R16_I, SBGGR10),
/* RAW 12 */
TEGRA210_VIDEO_FMT(RAW12, 12, SRGGB12_1X12, 2, T_R16_I, SRGGB12),
TEGRA210_VIDEO_FMT(RAW12, 12, SGRBG12_1X12, 2, T_R16_I, SGRBG12),
TEGRA210_VIDEO_FMT(RAW12, 12, SGBRG12_1X12, 2, T_R16_I, SGBRG12),
TEGRA210_VIDEO_FMT(RAW12, 12, SBGGR12_1X12, 2, T_R16_I, SBGGR12),
/* RGB888 */
TEGRA210_VIDEO_FMT(RGB888, 24, RGB888_1X24, 4, T_A8R8G8B8, XBGR32),
TEGRA210_VIDEO_FMT(RGB888, 24, RGB888_1X32_PADHI, 4, T_A8B8G8R8,
RGBX32),
/* YUV422 */
TEGRA210_VIDEO_FMT(YUV422_8, 16, UYVY8_1X16, 2, T_U8_Y8__V8_Y8, YVYU),
TEGRA210_VIDEO_FMT(YUV422_8, 16, VYUY8_1X16, 2, T_V8_Y8__U8_Y8, YUYV),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YUYV8_1X16, 2, T_Y8_U8__Y8_V8, VYUY),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YVYU8_1X16, 2, T_Y8_V8__Y8_U8, UYVY),
TEGRA210_VIDEO_FMT(YUV422_8, 16, UYVY8_1X16, 1, T_Y8__V8U8_N422, NV16),
TEGRA210_VIDEO_FMT(YUV422_8, 16, UYVY8_2X8, 2, T_U8_Y8__V8_Y8, YVYU),
TEGRA210_VIDEO_FMT(YUV422_8, 16, VYUY8_2X8, 2, T_V8_Y8__U8_Y8, YUYV),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YUYV8_2X8, 2, T_Y8_U8__Y8_V8, VYUY),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YVYU8_2X8, 2, T_Y8_V8__Y8_U8, UYVY),
};
/* Tegra210 VI operations */
static const struct tegra_vi_ops tegra210_vi_ops = {
.channel_host1x_syncpt_init = tegra210_channel_host1x_syncpt_init,
.channel_host1x_syncpt_free = tegra210_channel_host1x_syncpt_free,
.vi_fmt_align = tegra210_fmt_align,
.vi_start_streaming = tegra210_vi_start_streaming,
.vi_stop_streaming = tegra210_vi_stop_streaming,
};
/* Tegra210 VI SoC data */
const struct tegra_vi_soc tegra210_vi_soc = {
.video_formats = tegra210_video_formats,
.nformats = ARRAY_SIZE(tegra210_video_formats),
.ops = &tegra210_vi_ops,
.hw_revision = 3,
.vi_max_channels = 6,
#if IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG)
.default_video_format = &tegra210_video_formats[0],
.vi_max_clk_hz = 499200000,
#else
.default_video_format = &tegra210_video_formats[4],
.vi_max_clk_hz = 998400000,
#endif
};
/* Tegra210 CSI PHY registers accessors */
static void csi_write(struct tegra_csi *csi, u8 portno, unsigned int addr,
u32 val)
{
void __iomem *csi_pp_base;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
writel_relaxed(val, csi_pp_base + addr);
}
/* Tegra210 CSI Pixel parser registers accessors */
static void pp_write(struct tegra_csi *csi, u8 portno, u32 addr, u32 val)
{
void __iomem *csi_pp_base;
unsigned int offset;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
writel_relaxed(val, csi_pp_base + offset + addr);
}
static u32 pp_read(struct tegra_csi *csi, u8 portno, u32 addr)
{
void __iomem *csi_pp_base;
unsigned int offset;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
return readl_relaxed(csi_pp_base + offset + addr);
}
/* Tegra210 CSI CIL A/B port registers accessors */
static void cil_write(struct tegra_csi *csi, u8 portno, u32 addr, u32 val)
{
void __iomem *csi_cil_base;
unsigned int offset;
csi_cil_base = csi->iomem + CSI_PP_OFFSET(portno >> 1) +
TEGRA210_CSI_CIL_OFFSET;
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
writel_relaxed(val, csi_cil_base + offset + addr);
}
static u32 cil_read(struct tegra_csi *csi, u8 portno, u32 addr)
{
void __iomem *csi_cil_base;
unsigned int offset;
csi_cil_base = csi->iomem + CSI_PP_OFFSET(portno >> 1) +
TEGRA210_CSI_CIL_OFFSET;
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
return readl_relaxed(csi_cil_base + offset + addr);
}
/* Tegra210 CSI Test pattern generator registers accessor */
static void tpg_write(struct tegra_csi *csi, u8 portno, unsigned int addr,
u32 val)
{
void __iomem *csi_pp_base;
unsigned int offset;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET +
TEGRA210_CSI_TPG_OFFSET;
writel_relaxed(val, csi_pp_base + offset + addr);
}
/*
* Tegra210 CSI operations
*/
static void tegra210_csi_port_recover(struct tegra_csi_channel *csi_chan,
u8 portno)
{
struct tegra_csi *csi = csi_chan->csi;
u32 val;
/*
* Recover CSI hardware in case of capture errors by issuing
* software reset to CSICIL sensor, pixel parser, and clear errors
* to have clean capture on next streaming.
*/
val = pp_read(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_PIXEL_PARSER_STATUS 0x%08x\n", val);
val = cil_read(csi, portno, TEGRA_CSI_CIL_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CIL_STATUS 0x%08x\n", val);
val = cil_read(csi, portno, TEGRA_CSI_CILX_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CILX_STATUS 0x%08x\n", val);
if (csi_chan->numlanes == 4) {
/* reset CSI CIL sensor */
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x1);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x1);
/*
* SW_STATUS_RESET resets all status bits of PPA, PPB, CILA,
* CILB status registers and debug counters.
* So, SW_STATUS_RESET can be used only when CSI brick is in
* x4 mode.
*/
csi_write(csi, portno, TEGRA_CSI_CSI_SW_STATUS_RESET, 0x1);
/* sleep for 20 clock cycles to drain the FIFO */
usleep_range(10, 20);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x0);
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x0);
csi_write(csi, portno, TEGRA_CSI_CSI_SW_STATUS_RESET, 0x0);
} else {
/* reset CSICIL sensor */
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x1);
usleep_range(10, 20);
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x0);
/* clear the errors */
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS,
0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CIL_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CILX_STATUS, 0xffffffff);
}
}
static void tegra210_csi_error_recover(struct tegra_csi_channel *csi_chan)
{
u8 *portnos = csi_chan->csi_port_nums;
int i;
for (i = 0; i < csi_chan->numgangports; i++)
tegra210_csi_port_recover(csi_chan, portnos[i]);
}
static int
tegra210_csi_port_start_streaming(struct tegra_csi_channel *csi_chan,
u8 portno)
{
struct tegra_csi *csi = csi_chan->csi;
u8 clk_settle_time = 0;
u8 ths_settle_time = 10;
u32 val;
if (!csi_chan->pg_mode)
tegra_csi_calc_settle_time(csi_chan, portno, &clk_settle_time,
&ths_settle_time);
csi_write(csi, portno, TEGRA_CSI_CLKEN_OVERRIDE, 0);
/* clean up status */
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CIL_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CILX_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CIL_INTERRUPT_MASK, 0x0);
/* CIL PHY registers setup */
cil_write(csi, portno, TEGRA_CSI_CIL_PAD_CONFIG0, 0x0);
cil_write(csi, portno, TEGRA_CSI_CIL_PHY_CONTROL,
FIELD_PREP(CLK_SETTLE_MASK, clk_settle_time) |
FIELD_PREP(THS_SETTLE_MASK, ths_settle_time));
/*
* The CSI unit provides for connection of up to six cameras in
* the system and is organized as three identical instances of
* two MIPI support blocks, each with a separate 4-lane
* interface that can be configured as a single camera with 4
* lanes or as a dual camera with 2 lanes available for each
* camera.
*/
if (csi_chan->numlanes == 4) {
cil_write(csi, portno + 1, TEGRA_CSI_CIL_STATUS, 0xffffffff);
cil_write(csi, portno + 1, TEGRA_CSI_CILX_STATUS, 0xffffffff);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_INTERRUPT_MASK, 0x0);
cil_write(csi, portno, TEGRA_CSI_CIL_PAD_CONFIG0,
BRICK_CLOCK_A_4X);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_PAD_CONFIG0, 0x0);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_INTERRUPT_MASK, 0x0);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_PHY_CONTROL,
FIELD_PREP(CLK_SETTLE_MASK, clk_settle_time) |
FIELD_PREP(THS_SETTLE_MASK, ths_settle_time));
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND,
CSI_A_PHY_CIL_ENABLE | CSI_B_PHY_CIL_ENABLE);
} else {
val = ((portno & 1) == PORT_A) ?
CSI_A_PHY_CIL_ENABLE | CSI_B_PHY_CIL_NOP :
CSI_B_PHY_CIL_ENABLE | CSI_A_PHY_CIL_NOP;
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND, val);
}
/* CSI pixel parser registers setup */
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_PP_COMMAND,
(0xf << CSI_PP_START_MARKER_FRAME_MAX_OFFSET) |
CSI_PP_SINGLE_SHOT_ENABLE | CSI_PP_RST);
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_INTERRUPT_MASK, 0x0);
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_CONTROL0,
CSI_PP_PACKET_HEADER_SENT |
CSI_PP_DATA_IDENTIFIER_ENABLE |
CSI_PP_WORD_COUNT_SELECT_HEADER |
CSI_PP_CRC_CHECK_ENABLE | CSI_PP_WC_CHECK |
CSI_PP_OUTPUT_FORMAT_STORE | CSI_PPA_PAD_LINE_NOPAD |
CSI_PP_HEADER_EC_DISABLE | CSI_PPA_PAD_FRAME_NOPAD |
(portno & 1));
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_CONTROL1,
(0x1 << CSI_PP_TOP_FIELD_FRAME_OFFSET) |
(0x1 << CSI_PP_TOP_FIELD_FRAME_MASK_OFFSET));
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_GAP,
0x14 << PP_FRAME_MIN_GAP_OFFSET);
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_EXPECTED_FRAME, 0x0);
pp_write(csi, portno, TEGRA_CSI_INPUT_STREAM_CONTROL,
(0x3f << CSI_SKIP_PACKET_THRESHOLD_OFFSET) |
(csi_chan->numlanes - 1));
/* TPG setup */
if (csi_chan->pg_mode) {
tpg_write(csi, portno, TEGRA_CSI_PATTERN_GENERATOR_CTRL,
((csi_chan->pg_mode - 1) << PG_MODE_OFFSET) |
PG_ENABLE);
tpg_write(csi, portno, TEGRA_CSI_PG_BLANK,
csi_chan->v_blank << PG_VBLANK_OFFSET |
csi_chan->h_blank);
tpg_write(csi, portno, TEGRA_CSI_PG_PHASE, 0x0);
tpg_write(csi, portno, TEGRA_CSI_PG_RED_FREQ,
(0x10 << PG_RED_VERT_INIT_FREQ_OFFSET) |
(0x10 << PG_RED_HOR_INIT_FREQ_OFFSET));
tpg_write(csi, portno, TEGRA_CSI_PG_RED_FREQ_RATE, 0x0);
tpg_write(csi, portno, TEGRA_CSI_PG_GREEN_FREQ,
(0x10 << PG_GREEN_VERT_INIT_FREQ_OFFSET) |
(0x10 << PG_GREEN_HOR_INIT_FREQ_OFFSET));
tpg_write(csi, portno, TEGRA_CSI_PG_GREEN_FREQ_RATE, 0x0);
tpg_write(csi, portno, TEGRA_CSI_PG_BLUE_FREQ,
(0x10 << PG_BLUE_VERT_INIT_FREQ_OFFSET) |
(0x10 << PG_BLUE_HOR_INIT_FREQ_OFFSET));
tpg_write(csi, portno, TEGRA_CSI_PG_BLUE_FREQ_RATE, 0x0);
}
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_PP_COMMAND,
(0xf << CSI_PP_START_MARKER_FRAME_MAX_OFFSET) |
CSI_PP_SINGLE_SHOT_ENABLE | CSI_PP_ENABLE);
return 0;
}
static void
tegra210_csi_port_stop_streaming(struct tegra_csi_channel *csi_chan, u8 portno)
{
struct tegra_csi *csi = csi_chan->csi;
u32 val;
val = pp_read(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_PIXEL_PARSER_STATUS 0x%08x\n", val);
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS, val);
val = cil_read(csi, portno, TEGRA_CSI_CIL_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CIL_STATUS 0x%08x\n", val);
cil_write(csi, portno, TEGRA_CSI_CIL_STATUS, val);
val = cil_read(csi, portno, TEGRA_CSI_CILX_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CILX_STATUS 0x%08x\n", val);
cil_write(csi, portno, TEGRA_CSI_CILX_STATUS, val);
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_PP_COMMAND,
(0xf << CSI_PP_START_MARKER_FRAME_MAX_OFFSET) |
CSI_PP_DISABLE);
if (csi_chan->pg_mode) {
tpg_write(csi, portno, TEGRA_CSI_PATTERN_GENERATOR_CTRL,
PG_DISABLE);
return;
}
if (csi_chan->numlanes == 4) {
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND,
CSI_A_PHY_CIL_DISABLE |
CSI_B_PHY_CIL_DISABLE);
} else {
val = ((portno & 1) == PORT_A) ?
CSI_A_PHY_CIL_DISABLE | CSI_B_PHY_CIL_NOP :
CSI_B_PHY_CIL_DISABLE | CSI_A_PHY_CIL_NOP;
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND, val);
}
}
static int tegra210_csi_start_streaming(struct tegra_csi_channel *csi_chan)
{
u8 *portnos = csi_chan->csi_port_nums;
int ret, i;
for (i = 0; i < csi_chan->numgangports; i++) {
ret = tegra210_csi_port_start_streaming(csi_chan, portnos[i]);
if (ret)
goto stream_start_fail;
}
return 0;
stream_start_fail:
for (i = i - 1; i >= 0; i--)
tegra210_csi_port_stop_streaming(csi_chan, portnos[i]);
return ret;
}
static void tegra210_csi_stop_streaming(struct tegra_csi_channel *csi_chan)
{
u8 *portnos = csi_chan->csi_port_nums;
int i;
for (i = 0; i < csi_chan->numgangports; i++)
tegra210_csi_port_stop_streaming(csi_chan, portnos[i]);
}
/*
* Tegra210 CSI TPG frame rate table with horizontal and vertical
* blanking intervals for corresponding format and resolution.
* Blanking intervals are tuned values from design team for max TPG
* clock rate.
*/
static const struct tpg_framerate tegra210_tpg_frmrate_table[] = {
{
.frmsize = { 1280, 720 },
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.framerate = 120,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 1920, 1080 },
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.framerate = 60,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 3840, 2160 },
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.framerate = 20,
.h_blank = 8,
.v_blank = 8,
},
{
.frmsize = { 1280, 720 },
.code = MEDIA_BUS_FMT_RGB888_1X32_PADHI,
.framerate = 60,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 1920, 1080 },
.code = MEDIA_BUS_FMT_RGB888_1X32_PADHI,
.framerate = 30,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 3840, 2160 },
.code = MEDIA_BUS_FMT_RGB888_1X32_PADHI,
.framerate = 8,
.h_blank = 8,
.v_blank = 8,
},
};
static const char * const tegra210_csi_cil_clks[] = {
"csi",
"cilab",
"cilcd",
"cile",
#if IS_ENABLED(CONFIG_VIDEO_TEGRA_TPG)
"csi_tpg",
#endif
};
/* Tegra210 CSI operations */
static const struct tegra_csi_ops tegra210_csi_ops = {
.csi_start_streaming = tegra210_csi_start_streaming,
.csi_stop_streaming = tegra210_csi_stop_streaming,
.csi_err_recover = tegra210_csi_error_recover,
};
/* Tegra210 CSI SoC data */
const struct tegra_csi_soc tegra210_csi_soc = {
.ops = &tegra210_csi_ops,
.csi_max_channels = 6,
.clk_names = tegra210_csi_cil_clks,
.num_clks = ARRAY_SIZE(tegra210_csi_cil_clks),
.tpg_frmrate_table = tegra210_tpg_frmrate_table,
.tpg_frmrate_table_size = ARRAY_SIZE(tegra210_tpg_frmrate_table),
};