Loading...
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ALPHA_USER_H #define _ALPHA_USER_H #include <linux/sched.h> #include <linux/ptrace.h> #include <asm/page.h> #include <asm/reg.h> /* * Core file format: The core file is written in such a way that gdb * can understand it and provide useful information to the user (under * linux we use the `trad-core' bfd, NOT the osf-core). The file contents * are as follows: * * upage: 1 page consisting of a user struct that tells gdb * what is present in the file. Directly after this is a * copy of the task_struct, which is currently not used by gdb, * but it may come in handy at some point. All of the registers * are stored as part of the upage. The upage should always be * only one page long. * data: The data segment follows next. We use current->end_text to * current->brk to pick up all of the user variables, plus any memory * that may have been sbrk'ed. No attempt is made to determine if a * page is demand-zero or if a page is totally unused, we just cover * the entire range. All of the addresses are rounded in such a way * that an integral number of pages is written. * stack: We need the stack information in order to get a meaningful * backtrace. We need to write the data from usp to * current->start_stack, so we round each of these in order to be able * to write an integer number of pages. */ struct user { unsigned long regs[EF_SIZE/8+32]; /* integer and fp regs */ size_t u_tsize; /* text size (pages) */ size_t u_dsize; /* data size (pages) */ size_t u_ssize; /* stack size (pages) */ unsigned long start_code; /* text starting address */ unsigned long start_data; /* data starting address */ unsigned long start_stack; /* stack starting address */ long int signal; /* signal causing core dump */ unsigned long u_ar0; /* help gdb find registers */ unsigned long magic; /* identifies a core file */ char u_comm[32]; /* user command name */ }; #endif /* _ALPHA_USER_H */ |