Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_STATS_H #define _KERNEL_STATS_H #ifdef CONFIG_SCHEDSTATS extern struct static_key_false sched_schedstats; /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_arrive(struct rq *rq, unsigned long long delta) { if (rq) { rq->rq_sched_info.run_delay += delta; rq->rq_sched_info.pcount++; } } /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_depart(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_cpu_time += delta; } static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_sched_info.run_delay += delta; } #define schedstat_enabled() static_branch_unlikely(&sched_schedstats) #define __schedstat_inc(var) do { var++; } while (0) #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0) #define __schedstat_add(var, amt) do { var += (amt); } while (0) #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0) #define __schedstat_set(var, val) do { var = (val); } while (0) #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0) #define schedstat_val(var) (var) #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0) void __update_stats_wait_start(struct rq *rq, struct task_struct *p, struct sched_statistics *stats); void __update_stats_wait_end(struct rq *rq, struct task_struct *p, struct sched_statistics *stats); void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p, struct sched_statistics *stats); static inline void check_schedstat_required(void) { if (schedstat_enabled()) return; /* Force schedstat enabled if a dependent tracepoint is active */ if (trace_sched_stat_wait_enabled() || trace_sched_stat_sleep_enabled() || trace_sched_stat_iowait_enabled() || trace_sched_stat_blocked_enabled() || trace_sched_stat_runtime_enabled()) printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n"); } #else /* !CONFIG_SCHEDSTATS: */ static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { } static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { } static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { } # define schedstat_enabled() 0 # define __schedstat_inc(var) do { } while (0) # define schedstat_inc(var) do { } while (0) # define __schedstat_add(var, amt) do { } while (0) # define schedstat_add(var, amt) do { } while (0) # define __schedstat_set(var, val) do { } while (0) # define schedstat_set(var, val) do { } while (0) # define schedstat_val(var) 0 # define schedstat_val_or_zero(var) 0 # define __update_stats_wait_start(rq, p, stats) do { } while (0) # define __update_stats_wait_end(rq, p, stats) do { } while (0) # define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0) # define check_schedstat_required() do { } while (0) #endif /* CONFIG_SCHEDSTATS */ #ifdef CONFIG_FAIR_GROUP_SCHED struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; #endif static inline struct sched_statistics * __schedstats_from_se(struct sched_entity *se) { #ifdef CONFIG_FAIR_GROUP_SCHED if (!entity_is_task(se)) return &container_of(se, struct sched_entity_stats, se)->stats; #endif return &task_of(se)->stats; } #ifdef CONFIG_PSI void psi_task_change(struct task_struct *task, int clear, int set); void psi_task_switch(struct task_struct *prev, struct task_struct *next, bool sleep); void psi_account_irqtime(struct task_struct *task, u32 delta); /* * PSI tracks state that persists across sleeps, such as iowaits and * memory stalls. As a result, it has to distinguish between sleeps, * where a task's runnable state changes, and requeues, where a task * and its state are being moved between CPUs and runqueues. */ static inline void psi_enqueue(struct task_struct *p, bool wakeup) { int clear = 0, set = TSK_RUNNING; if (static_branch_likely(&psi_disabled)) return; if (p->in_memstall) set |= TSK_MEMSTALL_RUNNING; if (!wakeup) { if (p->in_memstall) set |= TSK_MEMSTALL; } else { if (p->in_iowait) clear |= TSK_IOWAIT; } psi_task_change(p, clear, set); } static inline void psi_dequeue(struct task_struct *p, bool sleep) { if (static_branch_likely(&psi_disabled)) return; /* * A voluntary sleep is a dequeue followed by a task switch. To * avoid walking all ancestors twice, psi_task_switch() handles * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU. * Do nothing here. */ if (sleep) return; psi_task_change(p, p->psi_flags, 0); } static inline void psi_ttwu_dequeue(struct task_struct *p) { if (static_branch_likely(&psi_disabled)) return; /* * Is the task being migrated during a wakeup? Make sure to * deregister its sleep-persistent psi states from the old * queue, and let psi_enqueue() know it has to requeue. */ if (unlikely(p->psi_flags)) { struct rq_flags rf; struct rq *rq; rq = __task_rq_lock(p, &rf); psi_task_change(p, p->psi_flags, 0); __task_rq_unlock(rq, &rf); } } static inline void psi_sched_switch(struct task_struct *prev, struct task_struct *next, bool sleep) { if (static_branch_likely(&psi_disabled)) return; psi_task_switch(prev, next, sleep); } #else /* CONFIG_PSI */ static inline void psi_enqueue(struct task_struct *p, bool wakeup) {} static inline void psi_dequeue(struct task_struct *p, bool sleep) {} static inline void psi_ttwu_dequeue(struct task_struct *p) {} static inline void psi_sched_switch(struct task_struct *prev, struct task_struct *next, bool sleep) {} static inline void psi_account_irqtime(struct task_struct *task, u32 delta) {} #endif /* CONFIG_PSI */ #ifdef CONFIG_SCHED_INFO /* * We are interested in knowing how long it was from the *first* time a * task was queued to the time that it finally hit a CPU, we call this routine * from dequeue_task() to account for possible rq->clock skew across CPUs. The * delta taken on each CPU would annul the skew. */ static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t) { unsigned long long delta = 0; if (!t->sched_info.last_queued) return; delta = rq_clock(rq) - t->sched_info.last_queued; t->sched_info.last_queued = 0; t->sched_info.run_delay += delta; rq_sched_info_dequeue(rq, delta); } /* * Called when a task finally hits the CPU. We can now calculate how * long it was waiting to run. We also note when it began so that we * can keep stats on how long its timeslice is. */ static void sched_info_arrive(struct rq *rq, struct task_struct *t) { unsigned long long now, delta = 0; if (!t->sched_info.last_queued) return; now = rq_clock(rq); delta = now - t->sched_info.last_queued; t->sched_info.last_queued = 0; t->sched_info.run_delay += delta; t->sched_info.last_arrival = now; t->sched_info.pcount++; rq_sched_info_arrive(rq, delta); } /* * This function is only called from enqueue_task(), but also only updates * the timestamp if it is already not set. It's assumed that * sched_info_dequeue() will clear that stamp when appropriate. */ static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t) { if (!t->sched_info.last_queued) t->sched_info.last_queued = rq_clock(rq); } /* * Called when a process ceases being the active-running process involuntarily * due, typically, to expiring its time slice (this may also be called when * switching to the idle task). Now we can calculate how long we ran. * Also, if the process is still in the TASK_RUNNING state, call * sched_info_enqueue() to mark that it has now again started waiting on * the runqueue. */ static inline void sched_info_depart(struct rq *rq, struct task_struct *t) { unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; rq_sched_info_depart(rq, delta); if (task_is_running(t)) sched_info_enqueue(rq, t); } /* * Called when tasks are switched involuntarily due, typically, to expiring * their time slice. (This may also be called when switching to or from * the idle task.) We are only called when prev != next. */ static inline void sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { /* * prev now departs the CPU. It's not interesting to record * stats about how efficient we were at scheduling the idle * process, however. */ if (prev != rq->idle) sched_info_depart(rq, prev); if (next != rq->idle) sched_info_arrive(rq, next); } #else /* !CONFIG_SCHED_INFO: */ # define sched_info_enqueue(rq, t) do { } while (0) # define sched_info_dequeue(rq, t) do { } while (0) # define sched_info_switch(rq, t, next) do { } while (0) #endif /* CONFIG_SCHED_INFO */ #endif /* _KERNEL_STATS_H */ |