Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | // SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/rtc/rtc-pl031.c * * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC * * Author: Deepak Saxena <dsaxena@plexity.net> * * Copyright 2006 (c) MontaVista Software, Inc. * * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com> * Copyright 2010 (c) ST-Ericsson AB */ #include <linux/module.h> #include <linux/rtc.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/amba/bus.h> #include <linux/io.h> #include <linux/bcd.h> #include <linux/delay.h> #include <linux/pm_wakeirq.h> #include <linux/slab.h> /* * Register definitions */ #define RTC_DR 0x00 /* Data read register */ #define RTC_MR 0x04 /* Match register */ #define RTC_LR 0x08 /* Data load register */ #define RTC_CR 0x0c /* Control register */ #define RTC_IMSC 0x10 /* Interrupt mask and set register */ #define RTC_RIS 0x14 /* Raw interrupt status register */ #define RTC_MIS 0x18 /* Masked interrupt status register */ #define RTC_ICR 0x1c /* Interrupt clear register */ /* ST variants have additional timer functionality */ #define RTC_TDR 0x20 /* Timer data read register */ #define RTC_TLR 0x24 /* Timer data load register */ #define RTC_TCR 0x28 /* Timer control register */ #define RTC_YDR 0x30 /* Year data read register */ #define RTC_YMR 0x34 /* Year match register */ #define RTC_YLR 0x38 /* Year data load register */ #define RTC_CR_EN (1 << 0) /* counter enable bit */ #define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */ #define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */ /* Common bit definitions for Interrupt status and control registers */ #define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */ #define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */ /* Common bit definations for ST v2 for reading/writing time */ #define RTC_SEC_SHIFT 0 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */ #define RTC_MIN_SHIFT 6 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */ #define RTC_HOUR_SHIFT 12 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */ #define RTC_WDAY_SHIFT 17 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */ #define RTC_MDAY_SHIFT 20 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */ #define RTC_MON_SHIFT 25 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */ #define RTC_TIMER_FREQ 32768 /** * struct pl031_vendor_data - per-vendor variations * @ops: the vendor-specific operations used on this silicon version * @clockwatch: if this is an ST Microelectronics silicon version with a * clockwatch function * @st_weekday: if this is an ST Microelectronics silicon version that need * the weekday fix * @irqflags: special IRQ flags per variant */ struct pl031_vendor_data { struct rtc_class_ops ops; bool clockwatch; bool st_weekday; unsigned long irqflags; time64_t range_min; timeu64_t range_max; }; struct pl031_local { struct pl031_vendor_data *vendor; struct rtc_device *rtc; void __iomem *base; }; static int pl031_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct pl031_local *ldata = dev_get_drvdata(dev); unsigned long imsc; /* Clear any pending alarm interrupts. */ writel(RTC_BIT_AI, ldata->base + RTC_ICR); imsc = readl(ldata->base + RTC_IMSC); if (enabled == 1) writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC); else writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC); return 0; } /* * Convert Gregorian date to ST v2 RTC format. */ static int pl031_stv2_tm_to_time(struct device *dev, struct rtc_time *tm, unsigned long *st_time, unsigned long *bcd_year) { int year = tm->tm_year + 1900; int wday = tm->tm_wday; /* wday masking is not working in hardware so wday must be valid */ if (wday < -1 || wday > 6) { dev_err(dev, "invalid wday value %d\n", tm->tm_wday); return -EINVAL; } else if (wday == -1) { /* wday is not provided, calculate it here */ struct rtc_time calc_tm; rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm); wday = calc_tm.tm_wday; } *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8); *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT) | (tm->tm_mday << RTC_MDAY_SHIFT) | ((wday + 1) << RTC_WDAY_SHIFT) | (tm->tm_hour << RTC_HOUR_SHIFT) | (tm->tm_min << RTC_MIN_SHIFT) | (tm->tm_sec << RTC_SEC_SHIFT); return 0; } /* * Convert ST v2 RTC format to Gregorian date. */ static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year, struct rtc_time *tm) { tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100); tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1; tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT); tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1; tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT); tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT); tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT); tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year); tm->tm_year -= 1900; return 0; } static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm) { struct pl031_local *ldata = dev_get_drvdata(dev); pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR), readl(ldata->base + RTC_YDR), tm); return 0; } static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm) { unsigned long time; unsigned long bcd_year; struct pl031_local *ldata = dev_get_drvdata(dev); int ret; ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year); if (ret == 0) { writel(bcd_year, ldata->base + RTC_YLR); writel(time, ldata->base + RTC_LR); } return ret; } static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) { struct pl031_local *ldata = dev_get_drvdata(dev); int ret; ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR), readl(ldata->base + RTC_YMR), &alarm->time); alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI; alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI; return ret; } static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) { struct pl031_local *ldata = dev_get_drvdata(dev); unsigned long time; unsigned long bcd_year; int ret; ret = pl031_stv2_tm_to_time(dev, &alarm->time, &time, &bcd_year); if (ret == 0) { writel(bcd_year, ldata->base + RTC_YMR); writel(time, ldata->base + RTC_MR); pl031_alarm_irq_enable(dev, alarm->enabled); } return ret; } static irqreturn_t pl031_interrupt(int irq, void *dev_id) { struct pl031_local *ldata = dev_id; unsigned long rtcmis; unsigned long events = 0; rtcmis = readl(ldata->base + RTC_MIS); if (rtcmis & RTC_BIT_AI) { writel(RTC_BIT_AI, ldata->base + RTC_ICR); events |= (RTC_AF | RTC_IRQF); rtc_update_irq(ldata->rtc, 1, events); return IRQ_HANDLED; } return IRQ_NONE; } static int pl031_read_time(struct device *dev, struct rtc_time *tm) { struct pl031_local *ldata = dev_get_drvdata(dev); rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm); return 0; } static int pl031_set_time(struct device *dev, struct rtc_time *tm) { struct pl031_local *ldata = dev_get_drvdata(dev); writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR); return 0; } static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) { struct pl031_local *ldata = dev_get_drvdata(dev); rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time); alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI; alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI; return 0; } static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) { struct pl031_local *ldata = dev_get_drvdata(dev); writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR); pl031_alarm_irq_enable(dev, alarm->enabled); return 0; } static void pl031_remove(struct amba_device *adev) { struct pl031_local *ldata = dev_get_drvdata(&adev->dev); dev_pm_clear_wake_irq(&adev->dev); device_init_wakeup(&adev->dev, false); if (adev->irq[0]) free_irq(adev->irq[0], ldata); amba_release_regions(adev); } static int pl031_probe(struct amba_device *adev, const struct amba_id *id) { int ret; struct pl031_local *ldata; struct pl031_vendor_data *vendor = id->data; struct rtc_class_ops *ops; unsigned long time, data; ret = amba_request_regions(adev, NULL); if (ret) goto err_req; ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local), GFP_KERNEL); ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops), GFP_KERNEL); if (!ldata || !ops) { ret = -ENOMEM; goto out; } ldata->vendor = vendor; ldata->base = devm_ioremap(&adev->dev, adev->res.start, resource_size(&adev->res)); if (!ldata->base) { ret = -ENOMEM; goto out; } amba_set_drvdata(adev, ldata); dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev)); dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev)); data = readl(ldata->base + RTC_CR); /* Enable the clockwatch on ST Variants */ if (vendor->clockwatch) data |= RTC_CR_CWEN; else data |= RTC_CR_EN; writel(data, ldata->base + RTC_CR); /* * On ST PL031 variants, the RTC reset value does not provide correct * weekday for 2000-01-01. Correct the erroneous sunday to saturday. */ if (vendor->st_weekday) { if (readl(ldata->base + RTC_YDR) == 0x2000) { time = readl(ldata->base + RTC_DR); if ((time & (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK)) == 0x02120000) { time = time | (0x7 << RTC_WDAY_SHIFT); writel(0x2000, ldata->base + RTC_YLR); writel(time, ldata->base + RTC_LR); } } } device_init_wakeup(&adev->dev, true); ldata->rtc = devm_rtc_allocate_device(&adev->dev); if (IS_ERR(ldata->rtc)) { ret = PTR_ERR(ldata->rtc); goto out; } if (!adev->irq[0]) clear_bit(RTC_FEATURE_ALARM, ldata->rtc->features); ldata->rtc->ops = ops; ldata->rtc->range_min = vendor->range_min; ldata->rtc->range_max = vendor->range_max; ret = devm_rtc_register_device(ldata->rtc); if (ret) goto out; if (adev->irq[0]) { ret = request_irq(adev->irq[0], pl031_interrupt, vendor->irqflags, "rtc-pl031", ldata); if (ret) goto out; dev_pm_set_wake_irq(&adev->dev, adev->irq[0]); } return 0; out: amba_release_regions(adev); err_req: return ret; } /* Operations for the original ARM version */ static struct pl031_vendor_data arm_pl031 = { .ops = { .read_time = pl031_read_time, .set_time = pl031_set_time, .read_alarm = pl031_read_alarm, .set_alarm = pl031_set_alarm, .alarm_irq_enable = pl031_alarm_irq_enable, }, .range_max = U32_MAX, }; /* The First ST derivative */ static struct pl031_vendor_data stv1_pl031 = { .ops = { .read_time = pl031_read_time, .set_time = pl031_set_time, .read_alarm = pl031_read_alarm, .set_alarm = pl031_set_alarm, .alarm_irq_enable = pl031_alarm_irq_enable, }, .clockwatch = true, .st_weekday = true, .range_max = U32_MAX, }; /* And the second ST derivative */ static struct pl031_vendor_data stv2_pl031 = { .ops = { .read_time = pl031_stv2_read_time, .set_time = pl031_stv2_set_time, .read_alarm = pl031_stv2_read_alarm, .set_alarm = pl031_stv2_set_alarm, .alarm_irq_enable = pl031_alarm_irq_enable, }, .clockwatch = true, .st_weekday = true, /* * This variant shares the IRQ with another block and must not * suspend that IRQ line. * TODO check if it shares with IRQF_NO_SUSPEND user, else we can * remove IRQF_COND_SUSPEND */ .irqflags = IRQF_SHARED | IRQF_COND_SUSPEND, .range_min = RTC_TIMESTAMP_BEGIN_0000, .range_max = RTC_TIMESTAMP_END_9999, }; static const struct amba_id pl031_ids[] = { { .id = 0x00041031, .mask = 0x000fffff, .data = &arm_pl031, }, /* ST Micro variants */ { .id = 0x00180031, .mask = 0x00ffffff, .data = &stv1_pl031, }, { .id = 0x00280031, .mask = 0x00ffffff, .data = &stv2_pl031, }, {0, 0}, }; MODULE_DEVICE_TABLE(amba, pl031_ids); static struct amba_driver pl031_driver = { .drv = { .name = "rtc-pl031", }, .id_table = pl031_ids, .probe = pl031_probe, .remove = pl031_remove, }; module_amba_driver(pl031_driver); MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>"); MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver"); MODULE_LICENSE("GPL"); |