Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | // SPDX-License-Identifier: GPL-2.0+ // // Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved. #include <linux/io.h> #include <linux/rtc.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/clk.h> #include <linux/of.h> #define RTC_INPUT_CLK_32768HZ (0x00 << 5) #define RTC_INPUT_CLK_32000HZ (0x01 << 5) #define RTC_INPUT_CLK_38400HZ (0x02 << 5) #define RTC_SW_BIT (1 << 0) #define RTC_ALM_BIT (1 << 2) #define RTC_1HZ_BIT (1 << 4) #define RTC_2HZ_BIT (1 << 7) #define RTC_SAM0_BIT (1 << 8) #define RTC_SAM1_BIT (1 << 9) #define RTC_SAM2_BIT (1 << 10) #define RTC_SAM3_BIT (1 << 11) #define RTC_SAM4_BIT (1 << 12) #define RTC_SAM5_BIT (1 << 13) #define RTC_SAM6_BIT (1 << 14) #define RTC_SAM7_BIT (1 << 15) #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \ RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \ RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT) #define RTC_ENABLE_BIT (1 << 7) #define MAX_PIE_NUM 9 #define MAX_PIE_FREQ 512 #define MXC_RTC_TIME 0 #define MXC_RTC_ALARM 1 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */ #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */ #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */ #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */ #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */ #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */ #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */ #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */ #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */ #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */ #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */ #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */ #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */ enum imx_rtc_type { IMX1_RTC, IMX21_RTC, }; struct rtc_plat_data { struct rtc_device *rtc; void __iomem *ioaddr; int irq; struct clk *clk_ref; struct clk *clk_ipg; struct rtc_time g_rtc_alarm; enum imx_rtc_type devtype; }; static const struct of_device_id imx_rtc_dt_ids[] = { { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC }, { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC }, {} }; MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids); static inline int is_imx1_rtc(struct rtc_plat_data *data) { return data->devtype == IMX1_RTC; } /* * This function is used to obtain the RTC time or the alarm value in * second. */ static time64_t get_alarm_or_time(struct device *dev, int time_alarm) { struct rtc_plat_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0; switch (time_alarm) { case MXC_RTC_TIME: day = readw(ioaddr + RTC_DAYR); hr_min = readw(ioaddr + RTC_HOURMIN); sec = readw(ioaddr + RTC_SECOND); break; case MXC_RTC_ALARM: day = readw(ioaddr + RTC_DAYALARM); hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff; sec = readw(ioaddr + RTC_ALRM_SEC); break; } hr = hr_min >> 8; min = hr_min & 0xff; return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec; } /* * This function sets the RTC alarm value or the time value. */ static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time) { u32 tod, day, hr, min, sec, temp; struct rtc_plat_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; day = div_s64_rem(time, 86400, &tod); /* time is within a day now */ hr = tod / 3600; tod -= hr * 3600; /* time is within an hour now */ min = tod / 60; sec = tod - min * 60; temp = (hr << 8) + min; switch (time_alarm) { case MXC_RTC_TIME: writew(day, ioaddr + RTC_DAYR); writew(sec, ioaddr + RTC_SECOND); writew(temp, ioaddr + RTC_HOURMIN); break; case MXC_RTC_ALARM: writew(day, ioaddr + RTC_DAYALARM); writew(sec, ioaddr + RTC_ALRM_SEC); writew(temp, ioaddr + RTC_ALRM_HM); break; } } /* * This function updates the RTC alarm registers and then clears all the * interrupt status bits. */ static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm) { time64_t time; struct rtc_plat_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; time = rtc_tm_to_time64(alrm); /* clear all the interrupt status bits */ writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR); set_alarm_or_time(dev, MXC_RTC_ALARM, time); } static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit, unsigned int enabled) { struct rtc_plat_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; u32 reg; unsigned long flags; spin_lock_irqsave(&pdata->rtc->irq_lock, flags); reg = readw(ioaddr + RTC_RTCIENR); if (enabled) reg |= bit; else reg &= ~bit; writew(reg, ioaddr + RTC_RTCIENR); spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags); } /* This function is the RTC interrupt service routine. */ static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id) { struct platform_device *pdev = dev_id; struct rtc_plat_data *pdata = platform_get_drvdata(pdev); void __iomem *ioaddr = pdata->ioaddr; u32 status; u32 events = 0; spin_lock(&pdata->rtc->irq_lock); status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR); /* clear interrupt sources */ writew(status, ioaddr + RTC_RTCISR); /* update irq data & counter */ if (status & RTC_ALM_BIT) { events |= (RTC_AF | RTC_IRQF); /* RTC alarm should be one-shot */ mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0); } if (status & PIT_ALL_ON) events |= (RTC_PF | RTC_IRQF); rtc_update_irq(pdata->rtc, 1, events); spin_unlock(&pdata->rtc->irq_lock); return IRQ_HANDLED; } static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled); return 0; } /* * This function reads the current RTC time into tm in Gregorian date. */ static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm) { time64_t val; /* Avoid roll-over from reading the different registers */ do { val = get_alarm_or_time(dev, MXC_RTC_TIME); } while (val != get_alarm_or_time(dev, MXC_RTC_TIME)); rtc_time64_to_tm(val, tm); return 0; } /* * This function sets the internal RTC time based on tm in Gregorian date. */ static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm) { time64_t time = rtc_tm_to_time64(tm); /* Avoid roll-over from reading the different registers */ do { set_alarm_or_time(dev, MXC_RTC_TIME, time); } while (time != get_alarm_or_time(dev, MXC_RTC_TIME)); return 0; } /* * This function reads the current alarm value into the passed in 'alrm' * argument. It updates the alrm's pending field value based on the whether * an alarm interrupt occurs or not. */ static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct rtc_plat_data *pdata = dev_get_drvdata(dev); void __iomem *ioaddr = pdata->ioaddr; rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time); alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0; return 0; } /* * This function sets the RTC alarm based on passed in alrm. */ static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct rtc_plat_data *pdata = dev_get_drvdata(dev); rtc_update_alarm(dev, &alrm->time); memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time)); mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled); return 0; } /* RTC layer */ static const struct rtc_class_ops mxc_rtc_ops = { .read_time = mxc_rtc_read_time, .set_time = mxc_rtc_set_time, .read_alarm = mxc_rtc_read_alarm, .set_alarm = mxc_rtc_set_alarm, .alarm_irq_enable = mxc_rtc_alarm_irq_enable, }; static int mxc_rtc_probe(struct platform_device *pdev) { struct rtc_device *rtc; struct rtc_plat_data *pdata = NULL; u32 reg; unsigned long rate; int ret; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev); pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pdata->ioaddr)) return PTR_ERR(pdata->ioaddr); rtc = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(rtc)) return PTR_ERR(rtc); pdata->rtc = rtc; rtc->ops = &mxc_rtc_ops; if (is_imx1_rtc(pdata)) { struct rtc_time tm; /* 9bit days + hours minutes seconds */ rtc->range_max = (1 << 9) * 86400 - 1; /* * Set the start date as beginning of the current year. This can * be overridden using device tree. */ rtc_time64_to_tm(ktime_get_real_seconds(), &tm); rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0); rtc->set_start_time = true; } else { /* 16bit days + hours minutes seconds */ rtc->range_max = (1 << 16) * 86400ULL - 1; } pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg"); if (IS_ERR(pdata->clk_ipg)) { dev_err(&pdev->dev, "unable to get ipg clock!\n"); return PTR_ERR(pdata->clk_ipg); } pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref"); if (IS_ERR(pdata->clk_ref)) { dev_err(&pdev->dev, "unable to get ref clock!\n"); return PTR_ERR(pdata->clk_ref); } rate = clk_get_rate(pdata->clk_ref); if (rate == 32768) reg = RTC_INPUT_CLK_32768HZ; else if (rate == 32000) reg = RTC_INPUT_CLK_32000HZ; else if (rate == 38400) reg = RTC_INPUT_CLK_38400HZ; else { dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate); return -EINVAL; } reg |= RTC_ENABLE_BIT; writew(reg, (pdata->ioaddr + RTC_RTCCTL)); if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) { dev_err(&pdev->dev, "hardware module can't be enabled!\n"); return -EIO; } platform_set_drvdata(pdev, pdata); /* Configure and enable the RTC */ pdata->irq = platform_get_irq(pdev, 0); if (pdata->irq >= 0 && devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, IRQF_SHARED, pdev->name, pdev) < 0) { dev_warn(&pdev->dev, "interrupt not available.\n"); pdata->irq = -1; } if (pdata->irq >= 0) { device_init_wakeup(&pdev->dev, 1); ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq); if (ret) dev_err(&pdev->dev, "failed to enable irq wake\n"); } ret = devm_rtc_register_device(rtc); return ret; } static struct platform_driver mxc_rtc_driver = { .driver = { .name = "mxc_rtc", .of_match_table = imx_rtc_dt_ids, }, .probe = mxc_rtc_probe, }; module_platform_driver(mxc_rtc_driver) MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>"); MODULE_DESCRIPTION("RTC driver for Freescale MXC"); MODULE_LICENSE("GPL"); |