Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | // SPDX-License-Identifier: GPL-2.0-only /* * blockcheck.c * * Checksum and ECC codes for the OCFS2 userspace library. * * Copyright (C) 2006, 2008 Oracle. All rights reserved. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/crc32.h> #include <linux/buffer_head.h> #include <linux/bitops.h> #include <linux/debugfs.h> #include <linux/module.h> #include <linux/fs.h> #include <asm/byteorder.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "blockcheck.h" /* * We use the following conventions: * * d = # data bits * p = # parity bits * c = # total code bits (d + p) */ /* * Calculate the bit offset in the hamming code buffer based on the bit's * offset in the data buffer. Since the hamming code reserves all * power-of-two bits for parity, the data bit number and the code bit * number are offset by all the parity bits beforehand. * * Recall that bit numbers in hamming code are 1-based. This function * takes the 0-based data bit from the caller. * * An example. Take bit 1 of the data buffer. 1 is a power of two (2^0), * so it's a parity bit. 2 is a power of two (2^1), so it's a parity bit. * 3 is not a power of two. So bit 1 of the data buffer ends up as bit 3 * in the code buffer. * * The caller can pass in *p if it wants to keep track of the most recent * number of parity bits added. This allows the function to start the * calculation at the last place. */ static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache) { unsigned int b, p = 0; /* * Data bits are 0-based, but we're talking code bits, which * are 1-based. */ b = i + 1; /* Use the cache if it is there */ if (p_cache) p = *p_cache; b += p; /* * For every power of two below our bit number, bump our bit. * * We compare with (b + 1) because we have to compare with what b * would be _if_ it were bumped up by the parity bit. Capice? * * p is set above. */ for (; (1 << p) < (b + 1); p++) b++; if (p_cache) *p_cache = p; return b; } /* * This is the low level encoder function. It can be called across * multiple hunks just like the crc32 code. 'd' is the number of bits * _in_this_hunk_. nr is the bit offset of this hunk. So, if you had * two 512B buffers, you would do it like so: * * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0); * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8); * * If you just have one buffer, use ocfs2_hamming_encode_block(). */ u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr) { unsigned int i, b, p = 0; BUG_ON(!d); /* * b is the hamming code bit number. Hamming code specifies a * 1-based array, but C uses 0-based. So 'i' is for C, and 'b' is * for the algorithm. * * The i++ in the for loop is so that the start offset passed * to ocfs2_find_next_bit_set() is one greater than the previously * found bit. */ for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++) { /* * i is the offset in this hunk, nr + i is the total bit * offset. */ b = calc_code_bit(nr + i, &p); /* * Data bits in the resultant code are checked by * parity bits that are part of the bit number * representation. Huh? * * <wikipedia href="https://en.wikipedia.org/wiki/Hamming_code"> * In other words, the parity bit at position 2^k * checks bits in positions having bit k set in * their binary representation. Conversely, for * instance, bit 13, i.e. 1101(2), is checked by * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1. * </wikipedia> * * Note that 'k' is the _code_ bit number. 'b' in * our loop. */ parity ^= b; } /* While the data buffer was treated as little endian, the * return value is in host endian. */ return parity; } u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize) { return ocfs2_hamming_encode(0, data, blocksize * 8, 0); } /* * Like ocfs2_hamming_encode(), this can handle hunks. nr is the bit * offset of the current hunk. If bit to be fixed is not part of the * current hunk, this does nothing. * * If you only have one hunk, use ocfs2_hamming_fix_block(). */ void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr, unsigned int fix) { unsigned int i, b; BUG_ON(!d); /* * If the bit to fix has an hweight of 1, it's a parity bit. One * busted parity bit is its own error. Nothing to do here. */ if (hweight32(fix) == 1) return; /* * nr + d is the bit right past the data hunk we're looking at. * If fix after that, nothing to do */ if (fix >= calc_code_bit(nr + d, NULL)) return; /* * nr is the offset in the data hunk we're starting at. Let's * start b at the offset in the code buffer. See hamming_encode() * for a more detailed description of 'b'. */ b = calc_code_bit(nr, NULL); /* If the fix is before this hunk, nothing to do */ if (fix < b) return; for (i = 0; i < d; i++, b++) { /* Skip past parity bits */ while (hweight32(b) == 1) b++; /* * i is the offset in this data hunk. * nr + i is the offset in the total data buffer. * b is the offset in the total code buffer. * * Thus, when b == fix, bit i in the current hunk needs * fixing. */ if (b == fix) { if (ocfs2_test_bit(i, data)) ocfs2_clear_bit(i, data); else ocfs2_set_bit(i, data); break; } } } void ocfs2_hamming_fix_block(void *data, unsigned int blocksize, unsigned int fix) { ocfs2_hamming_fix(data, blocksize * 8, 0, fix); } /* * Debugfs handling. */ #ifdef CONFIG_DEBUG_FS static int blockcheck_u64_get(void *data, u64 *val) { *val = *(u64 *)data; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n"); static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats) { if (stats) { debugfs_remove_recursive(stats->b_debug_dir); stats->b_debug_dir = NULL; } } static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats, struct dentry *parent) { struct dentry *dir; dir = debugfs_create_dir("blockcheck", parent); stats->b_debug_dir = dir; debugfs_create_file("blocks_checked", S_IFREG | S_IRUSR, dir, &stats->b_check_count, &blockcheck_fops); debugfs_create_file("checksums_failed", S_IFREG | S_IRUSR, dir, &stats->b_failure_count, &blockcheck_fops); debugfs_create_file("ecc_recoveries", S_IFREG | S_IRUSR, dir, &stats->b_recover_count, &blockcheck_fops); } #else static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats, struct dentry *parent) { } static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats) { } #endif /* CONFIG_DEBUG_FS */ /* Always-called wrappers for starting and stopping the debugfs files */ void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats, struct dentry *parent) { ocfs2_blockcheck_debug_install(stats, parent); } void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats) { ocfs2_blockcheck_debug_remove(stats); } static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats) { u64 new_count; if (!stats) return; spin_lock(&stats->b_lock); stats->b_check_count++; new_count = stats->b_check_count; spin_unlock(&stats->b_lock); if (!new_count) mlog(ML_NOTICE, "Block check count has wrapped\n"); } static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats) { u64 new_count; if (!stats) return; spin_lock(&stats->b_lock); stats->b_failure_count++; new_count = stats->b_failure_count; spin_unlock(&stats->b_lock); if (!new_count) mlog(ML_NOTICE, "Checksum failure count has wrapped\n"); } static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats) { u64 new_count; if (!stats) return; spin_lock(&stats->b_lock); stats->b_recover_count++; new_count = stats->b_recover_count; spin_unlock(&stats->b_lock); if (!new_count) mlog(ML_NOTICE, "ECC recovery count has wrapped\n"); } /* * These are the low-level APIs for using the ocfs2_block_check structure. */ /* * This function generates check information for a block. * data is the block to be checked. bc is a pointer to the * ocfs2_block_check structure describing the crc32 and the ecc. * * bc should be a pointer inside data, as the function will * take care of zeroing it before calculating the check information. If * bc does not point inside data, the caller must make sure any inline * ocfs2_block_check structures are zeroed. * * The data buffer must be in on-disk endian (little endian for ocfs2). * bc will be filled with little-endian values and will be ready to go to * disk. */ void ocfs2_block_check_compute(void *data, size_t blocksize, struct ocfs2_block_check *bc) { u32 crc; u32 ecc; memset(bc, 0, sizeof(struct ocfs2_block_check)); crc = crc32_le(~0, data, blocksize); ecc = ocfs2_hamming_encode_block(data, blocksize); /* * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no * larger than 16 bits. */ BUG_ON(ecc > USHRT_MAX); bc->bc_crc32e = cpu_to_le32(crc); bc->bc_ecc = cpu_to_le16((u16)ecc); } /* * This function validates existing check information. Like _compute, * the function will take care of zeroing bc before calculating check codes. * If bc is not a pointer inside data, the caller must have zeroed any * inline ocfs2_block_check structures. * * Again, the data passed in should be the on-disk endian. */ int ocfs2_block_check_validate(void *data, size_t blocksize, struct ocfs2_block_check *bc, struct ocfs2_blockcheck_stats *stats) { int rc = 0; u32 bc_crc32e; u16 bc_ecc; u32 crc, ecc; ocfs2_blockcheck_inc_check(stats); bc_crc32e = le32_to_cpu(bc->bc_crc32e); bc_ecc = le16_to_cpu(bc->bc_ecc); memset(bc, 0, sizeof(struct ocfs2_block_check)); /* Fast path - if the crc32 validates, we're good to go */ crc = crc32_le(~0, data, blocksize); if (crc == bc_crc32e) goto out; ocfs2_blockcheck_inc_failure(stats); mlog(ML_ERROR, "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n", (unsigned int)bc_crc32e, (unsigned int)crc); /* Ok, try ECC fixups */ ecc = ocfs2_hamming_encode_block(data, blocksize); ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc); /* And check the crc32 again */ crc = crc32_le(~0, data, blocksize); if (crc == bc_crc32e) { ocfs2_blockcheck_inc_recover(stats); goto out; } mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n", (unsigned int)bc_crc32e, (unsigned int)crc); rc = -EIO; out: bc->bc_crc32e = cpu_to_le32(bc_crc32e); bc->bc_ecc = cpu_to_le16(bc_ecc); return rc; } /* * This function generates check information for a list of buffer_heads. * bhs is the blocks to be checked. bc is a pointer to the * ocfs2_block_check structure describing the crc32 and the ecc. * * bc should be a pointer inside data, as the function will * take care of zeroing it before calculating the check information. If * bc does not point inside data, the caller must make sure any inline * ocfs2_block_check structures are zeroed. * * The data buffer must be in on-disk endian (little endian for ocfs2). * bc will be filled with little-endian values and will be ready to go to * disk. */ void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc) { int i; u32 crc, ecc; BUG_ON(nr < 0); if (!nr) return; memset(bc, 0, sizeof(struct ocfs2_block_check)); for (i = 0, crc = ~0, ecc = 0; i < nr; i++) { crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size); /* * The number of bits in a buffer is obviously b_size*8. * The offset of this buffer is b_size*i, so the bit offset * of this buffer is b_size*8*i. */ ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data, bhs[i]->b_size * 8, bhs[i]->b_size * 8 * i); } /* * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no * larger than 16 bits. */ BUG_ON(ecc > USHRT_MAX); bc->bc_crc32e = cpu_to_le32(crc); bc->bc_ecc = cpu_to_le16((u16)ecc); } /* * This function validates existing check information on a list of * buffer_heads. Like _compute_bhs, the function will take care of * zeroing bc before calculating check codes. If bc is not a pointer * inside data, the caller must have zeroed any inline * ocfs2_block_check structures. * * Again, the data passed in should be the on-disk endian. */ int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc, struct ocfs2_blockcheck_stats *stats) { int i, rc = 0; u32 bc_crc32e; u16 bc_ecc; u32 crc, ecc, fix; BUG_ON(nr < 0); if (!nr) return 0; ocfs2_blockcheck_inc_check(stats); bc_crc32e = le32_to_cpu(bc->bc_crc32e); bc_ecc = le16_to_cpu(bc->bc_ecc); memset(bc, 0, sizeof(struct ocfs2_block_check)); /* Fast path - if the crc32 validates, we're good to go */ for (i = 0, crc = ~0; i < nr; i++) crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size); if (crc == bc_crc32e) goto out; ocfs2_blockcheck_inc_failure(stats); mlog(ML_ERROR, "CRC32 failed: stored: %u, computed %u. Applying ECC.\n", (unsigned int)bc_crc32e, (unsigned int)crc); /* Ok, try ECC fixups */ for (i = 0, ecc = 0; i < nr; i++) { /* * The number of bits in a buffer is obviously b_size*8. * The offset of this buffer is b_size*i, so the bit offset * of this buffer is b_size*8*i. */ ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data, bhs[i]->b_size * 8, bhs[i]->b_size * 8 * i); } fix = ecc ^ bc_ecc; for (i = 0; i < nr; i++) { /* * Try the fix against each buffer. It will only affect * one of them. */ ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8, bhs[i]->b_size * 8 * i, fix); } /* And check the crc32 again */ for (i = 0, crc = ~0; i < nr; i++) crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size); if (crc == bc_crc32e) { ocfs2_blockcheck_inc_recover(stats); goto out; } mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n", (unsigned int)bc_crc32e, (unsigned int)crc); rc = -EIO; out: bc->bc_crc32e = cpu_to_le32(bc_crc32e); bc->bc_ecc = cpu_to_le16(bc_ecc); return rc; } /* * These are the main API. They check the superblock flag before * calling the underlying operations. * * They expect the buffer(s) to be in disk format. */ void ocfs2_compute_meta_ecc(struct super_block *sb, void *data, struct ocfs2_block_check *bc) { if (ocfs2_meta_ecc(OCFS2_SB(sb))) ocfs2_block_check_compute(data, sb->s_blocksize, bc); } int ocfs2_validate_meta_ecc(struct super_block *sb, void *data, struct ocfs2_block_check *bc) { int rc = 0; struct ocfs2_super *osb = OCFS2_SB(sb); if (ocfs2_meta_ecc(osb)) rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc, &osb->osb_ecc_stats); return rc; } void ocfs2_compute_meta_ecc_bhs(struct super_block *sb, struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc) { if (ocfs2_meta_ecc(OCFS2_SB(sb))) ocfs2_block_check_compute_bhs(bhs, nr, bc); } int ocfs2_validate_meta_ecc_bhs(struct super_block *sb, struct buffer_head **bhs, int nr, struct ocfs2_block_check *bc) { int rc = 0; struct ocfs2_super *osb = OCFS2_SB(sb); if (ocfs2_meta_ecc(osb)) rc = ocfs2_block_check_validate_bhs(bhs, nr, bc, &osb->osb_ecc_stats); return rc; } |