// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_intf.h"
#include "dpu_kms.h"
#include "dpu_trace.h"
#include <linux/iopoll.h>
#define INTF_TIMING_ENGINE_EN 0x000
#define INTF_CONFIG 0x004
#define INTF_HSYNC_CTL 0x008
#define INTF_VSYNC_PERIOD_F0 0x00C
#define INTF_VSYNC_PERIOD_F1 0x010
#define INTF_VSYNC_PULSE_WIDTH_F0 0x014
#define INTF_VSYNC_PULSE_WIDTH_F1 0x018
#define INTF_DISPLAY_V_START_F0 0x01C
#define INTF_DISPLAY_V_START_F1 0x020
#define INTF_DISPLAY_V_END_F0 0x024
#define INTF_DISPLAY_V_END_F1 0x028
#define INTF_ACTIVE_V_START_F0 0x02C
#define INTF_ACTIVE_V_START_F1 0x030
#define INTF_ACTIVE_V_END_F0 0x034
#define INTF_ACTIVE_V_END_F1 0x038
#define INTF_DISPLAY_HCTL 0x03C
#define INTF_ACTIVE_HCTL 0x040
#define INTF_BORDER_COLOR 0x044
#define INTF_UNDERFLOW_COLOR 0x048
#define INTF_HSYNC_SKEW 0x04C
#define INTF_POLARITY_CTL 0x050
#define INTF_TEST_CTL 0x054
#define INTF_TP_COLOR0 0x058
#define INTF_TP_COLOR1 0x05C
#define INTF_CONFIG2 0x060
#define INTF_DISPLAY_DATA_HCTL 0x064
#define INTF_ACTIVE_DATA_HCTL 0x068
#define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084
#define INTF_PANEL_FORMAT 0x090
#define INTF_FRAME_LINE_COUNT_EN 0x0A8
#define INTF_FRAME_COUNT 0x0AC
#define INTF_LINE_COUNT 0x0B0
#define INTF_DEFLICKER_CONFIG 0x0F0
#define INTF_DEFLICKER_STRNG_COEFF 0x0F4
#define INTF_DEFLICKER_WEAK_COEFF 0x0F8
#define INTF_TPG_ENABLE 0x100
#define INTF_TPG_MAIN_CONTROL 0x104
#define INTF_TPG_VIDEO_CONFIG 0x108
#define INTF_TPG_COMPONENT_LIMITS 0x10C
#define INTF_TPG_RECTANGLE 0x110
#define INTF_TPG_INITIAL_VALUE 0x114
#define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118
#define INTF_TPG_RGB_MAPPING 0x11C
#define INTF_PROG_FETCH_START 0x170
#define INTF_PROG_ROT_START 0x174
#define INTF_MISR_CTRL 0x180
#define INTF_MISR_SIGNATURE 0x184
#define INTF_MUX 0x25C
#define INTF_STATUS 0x26C
#define INTF_AVR_CONTROL 0x270
#define INTF_AVR_MODE 0x274
#define INTF_AVR_TRIGGER 0x278
#define INTF_AVR_VTOTAL 0x27C
#define INTF_TEAR_MDP_VSYNC_SEL 0x280
#define INTF_TEAR_TEAR_CHECK_EN 0x284
#define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288
#define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C
#define INTF_TEAR_SYNC_WRCOUNT 0x290
#define INTF_TEAR_VSYNC_INIT_VAL 0x294
#define INTF_TEAR_INT_COUNT_VAL 0x298
#define INTF_TEAR_SYNC_THRESH 0x29C
#define INTF_TEAR_START_POS 0x2A0
#define INTF_TEAR_RD_PTR_IRQ 0x2A4
#define INTF_TEAR_WR_PTR_IRQ 0x2A8
#define INTF_TEAR_OUT_LINE_COUNT 0x2AC
#define INTF_TEAR_LINE_COUNT 0x2B0
#define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4
#define INTF_CFG_ACTIVE_H_EN BIT(29)
#define INTF_CFG_ACTIVE_V_EN BIT(30)
#define INTF_CFG2_DATABUS_WIDEN BIT(0)
#define INTF_CFG2_DATA_HCTL_EN BIT(4)
#define INTF_CFG2_DCE_DATA_COMPRESS BIT(12)
static void dpu_hw_intf_setup_timing_engine(struct dpu_hw_intf *ctx,
const struct dpu_hw_intf_timing_params *p,
const struct dpu_format *fmt)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 hsync_period, vsync_period;
u32 display_v_start, display_v_end;
u32 hsync_start_x, hsync_end_x;
u32 hsync_data_start_x, hsync_data_end_x;
u32 active_h_start, active_h_end;
u32 active_v_start, active_v_end;
u32 active_hctl, display_hctl, hsync_ctl;
u32 polarity_ctl, den_polarity;
u32 panel_format;
u32 intf_cfg, intf_cfg2 = 0;
u32 display_data_hctl = 0, active_data_hctl = 0;
u32 data_width;
bool dp_intf = false;
/* read interface_cfg */
intf_cfg = DPU_REG_READ(c, INTF_CONFIG);
if (ctx->cap->type == INTF_DP)
dp_intf = true;
hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width +
p->h_front_porch;
vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height +
p->v_front_porch;
display_v_start = ((p->vsync_pulse_width + p->v_back_porch) *
hsync_period) + p->hsync_skew;
display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) +
p->hsync_skew - 1;
hsync_start_x = p->h_back_porch + p->hsync_pulse_width;
hsync_end_x = hsync_period - p->h_front_porch - 1;
if (p->width != p->xres) { /* border fill added */
active_h_start = hsync_start_x;
active_h_end = active_h_start + p->xres - 1;
} else {
active_h_start = 0;
active_h_end = 0;
}
if (p->height != p->yres) { /* border fill added */
active_v_start = display_v_start;
active_v_end = active_v_start + (p->yres * hsync_period) - 1;
} else {
active_v_start = 0;
active_v_end = 0;
}
if (active_h_end) {
active_hctl = (active_h_end << 16) | active_h_start;
intf_cfg |= INTF_CFG_ACTIVE_H_EN;
} else {
active_hctl = 0;
}
if (active_v_end)
intf_cfg |= INTF_CFG_ACTIVE_V_EN;
hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width;
display_hctl = (hsync_end_x << 16) | hsync_start_x;
/*
* DATA_HCTL_EN controls data timing which can be different from
* video timing. It is recommended to enable it for all cases, except
* if compression is enabled in 1 pixel per clock mode
*/
if (p->wide_bus_en)
intf_cfg2 |= INTF_CFG2_DATABUS_WIDEN | INTF_CFG2_DATA_HCTL_EN;
data_width = p->width;
hsync_data_start_x = hsync_start_x;
hsync_data_end_x = hsync_start_x + data_width - 1;
display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x;
if (dp_intf) {
/* DP timing adjustment */
display_v_start += p->hsync_pulse_width + p->h_back_porch;
display_v_end -= p->h_front_porch;
active_h_start = hsync_start_x;
active_h_end = active_h_start + p->xres - 1;
active_v_start = display_v_start;
active_v_end = active_v_start + (p->yres * hsync_period) - 1;
active_hctl = (active_h_end << 16) | active_h_start;
display_hctl = active_hctl;
intf_cfg |= INTF_CFG_ACTIVE_H_EN | INTF_CFG_ACTIVE_V_EN;
}
den_polarity = 0;
polarity_ctl = (den_polarity << 2) | /* DEN Polarity */
(p->vsync_polarity << 1) | /* VSYNC Polarity */
(p->hsync_polarity << 0); /* HSYNC Polarity */
if (!DPU_FORMAT_IS_YUV(fmt))
panel_format = (fmt->bits[C0_G_Y] |
(fmt->bits[C1_B_Cb] << 2) |
(fmt->bits[C2_R_Cr] << 4) |
(0x21 << 8));
else
/* Interface treats all the pixel data in RGB888 format */
panel_format = (COLOR_8BIT |
(COLOR_8BIT << 2) |
(COLOR_8BIT << 4) |
(0x21 << 8));
DPU_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl);
DPU_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period);
DPU_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0,
p->vsync_pulse_width * hsync_period);
DPU_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl);
DPU_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start);
DPU_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end);
DPU_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl);
DPU_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start);
DPU_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end);
DPU_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr);
DPU_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr);
DPU_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew);
DPU_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl);
DPU_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3);
DPU_REG_WRITE(c, INTF_CONFIG, intf_cfg);
DPU_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format);
if (ctx->cap->features & BIT(DPU_DATA_HCTL_EN)) {
DPU_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
DPU_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl);
DPU_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl);
}
}
static void dpu_hw_intf_enable_timing_engine(
struct dpu_hw_intf *intf,
u8 enable)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
/* Note: Display interface select is handled in top block hw layer */
DPU_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0);
}
static void dpu_hw_intf_setup_prg_fetch(
struct dpu_hw_intf *intf,
const struct dpu_hw_intf_prog_fetch *fetch)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
int fetch_enable;
/*
* Fetch should always be outside the active lines. If the fetching
* is programmed within active region, hardware behavior is unknown.
*/
fetch_enable = DPU_REG_READ(c, INTF_CONFIG);
if (fetch->enable) {
fetch_enable |= BIT(31);
DPU_REG_WRITE(c, INTF_PROG_FETCH_START,
fetch->fetch_start);
} else {
fetch_enable &= ~BIT(31);
}
DPU_REG_WRITE(c, INTF_CONFIG, fetch_enable);
}
static void dpu_hw_intf_bind_pingpong_blk(
struct dpu_hw_intf *intf,
const enum dpu_pingpong pp)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
u32 mux_cfg;
mux_cfg = DPU_REG_READ(c, INTF_MUX);
mux_cfg &= ~0xf;
if (pp)
mux_cfg |= (pp - PINGPONG_0) & 0x7;
else
mux_cfg |= 0xf;
DPU_REG_WRITE(c, INTF_MUX, mux_cfg);
}
static void dpu_hw_intf_get_status(
struct dpu_hw_intf *intf,
struct dpu_hw_intf_status *s)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
unsigned long cap = intf->cap->features;
if (cap & BIT(DPU_INTF_STATUS_SUPPORTED))
s->is_en = DPU_REG_READ(c, INTF_STATUS) & BIT(0);
else
s->is_en = DPU_REG_READ(c, INTF_TIMING_ENGINE_EN);
s->is_prog_fetch_en = !!(DPU_REG_READ(c, INTF_CONFIG) & BIT(31));
if (s->is_en) {
s->frame_count = DPU_REG_READ(c, INTF_FRAME_COUNT);
s->line_count = DPU_REG_READ(c, INTF_LINE_COUNT);
} else {
s->line_count = 0;
s->frame_count = 0;
}
}
static u32 dpu_hw_intf_get_line_count(struct dpu_hw_intf *intf)
{
struct dpu_hw_blk_reg_map *c;
if (!intf)
return 0;
c = &intf->hw;
return DPU_REG_READ(c, INTF_LINE_COUNT);
}
static void dpu_hw_intf_setup_misr(struct dpu_hw_intf *intf, bool enable, u32 frame_count)
{
dpu_hw_setup_misr(&intf->hw, INTF_MISR_CTRL, enable, frame_count);
}
static int dpu_hw_intf_collect_misr(struct dpu_hw_intf *intf, u32 *misr_value)
{
return dpu_hw_collect_misr(&intf->hw, INTF_MISR_CTRL, INTF_MISR_SIGNATURE, misr_value);
}
static int dpu_hw_intf_enable_te(struct dpu_hw_intf *intf,
struct dpu_hw_tear_check *te)
{
struct dpu_hw_blk_reg_map *c;
int cfg;
if (!intf)
return -EINVAL;
c = &intf->hw;
cfg = BIT(19); /* VSYNC_COUNTER_EN */
if (te->hw_vsync_mode)
cfg |= BIT(20);
cfg |= te->vsync_count;
DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height);
DPU_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val);
DPU_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq);
DPU_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos);
DPU_REG_WRITE(c, INTF_TEAR_SYNC_THRESH,
((te->sync_threshold_continue << 16) |
te->sync_threshold_start));
DPU_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT,
(te->start_pos + te->sync_threshold_start + 1));
DPU_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, 1);
return 0;
}
static void dpu_hw_intf_setup_autorefresh_config(struct dpu_hw_intf *intf,
u32 frame_count, bool enable)
{
struct dpu_hw_blk_reg_map *c;
u32 refresh_cfg;
c = &intf->hw;
refresh_cfg = DPU_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
if (enable)
refresh_cfg = BIT(31) | frame_count;
else
refresh_cfg &= ~BIT(31);
DPU_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg);
}
/*
* dpu_hw_intf_get_autorefresh_config - Get autorefresh config from HW
* @intf: DPU intf structure
* @frame_count: Used to return the current frame count from hw
*
* Returns: True if autorefresh enabled, false if disabled.
*/
static bool dpu_hw_intf_get_autorefresh_config(struct dpu_hw_intf *intf,
u32 *frame_count)
{
u32 val = DPU_REG_READ(&intf->hw, INTF_TEAR_AUTOREFRESH_CONFIG);
if (frame_count != NULL)
*frame_count = val & 0xffff;
return !!((val & BIT(31)) >> 31);
}
static int dpu_hw_intf_disable_te(struct dpu_hw_intf *intf)
{
struct dpu_hw_blk_reg_map *c;
if (!intf)
return -EINVAL;
c = &intf->hw;
DPU_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, 0);
return 0;
}
static int dpu_hw_intf_connect_external_te(struct dpu_hw_intf *intf,
bool enable_external_te)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
u32 cfg;
int orig;
if (!intf)
return -EINVAL;
c = &intf->hw;
cfg = DPU_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC);
orig = (bool)(cfg & BIT(20));
if (enable_external_te)
cfg |= BIT(20);
else
cfg &= ~BIT(20);
DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
trace_dpu_intf_connect_ext_te(intf->idx - INTF_0, cfg);
return orig;
}
static int dpu_hw_intf_get_vsync_info(struct dpu_hw_intf *intf,
struct dpu_hw_pp_vsync_info *info)
{
struct dpu_hw_blk_reg_map *c = &intf->hw;
u32 val;
if (!intf || !info)
return -EINVAL;
c = &intf->hw;
val = DPU_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL);
info->rd_ptr_init_val = val & 0xffff;
val = DPU_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
info->rd_ptr_frame_count = (val & 0xffff0000) >> 16;
info->rd_ptr_line_count = val & 0xffff;
val = DPU_REG_READ(c, INTF_TEAR_LINE_COUNT);
info->wr_ptr_line_count = val & 0xffff;
val = DPU_REG_READ(c, INTF_FRAME_COUNT);
info->intf_frame_count = val;
return 0;
}
static void dpu_hw_intf_vsync_sel(struct dpu_hw_intf *intf,
u32 vsync_source)
{
struct dpu_hw_blk_reg_map *c;
if (!intf)
return;
c = &intf->hw;
DPU_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf));
}
static void dpu_hw_intf_disable_autorefresh(struct dpu_hw_intf *intf,
uint32_t encoder_id, u16 vdisplay)
{
struct dpu_hw_pp_vsync_info info;
int trial = 0;
/* If autorefresh is already disabled, we have nothing to do */
if (!dpu_hw_intf_get_autorefresh_config(intf, NULL))
return;
/*
* If autorefresh is enabled, disable it and make sure it is safe to
* proceed with current frame commit/push. Sequence followed is,
* 1. Disable TE
* 2. Disable autorefresh config
* 4. Poll for frame transfer ongoing to be false
* 5. Enable TE back
*/
dpu_hw_intf_connect_external_te(intf, false);
dpu_hw_intf_setup_autorefresh_config(intf, 0, false);
do {
udelay(DPU_ENC_MAX_POLL_TIMEOUT_US);
if ((trial * DPU_ENC_MAX_POLL_TIMEOUT_US)
> (KICKOFF_TIMEOUT_MS * USEC_PER_MSEC)) {
DPU_ERROR("enc%d intf%d disable autorefresh failed\n",
encoder_id, intf->idx - INTF_0);
break;
}
trial++;
dpu_hw_intf_get_vsync_info(intf, &info);
} while (info.wr_ptr_line_count > 0 &&
info.wr_ptr_line_count < vdisplay);
dpu_hw_intf_connect_external_te(intf, true);
DPU_DEBUG("enc%d intf%d disabled autorefresh\n",
encoder_id, intf->idx - INTF_0);
}
static void dpu_hw_intf_program_intf_cmd_cfg(struct dpu_hw_intf *ctx,
struct dpu_hw_intf_cmd_mode_cfg *cmd_mode_cfg)
{
u32 intf_cfg2 = DPU_REG_READ(&ctx->hw, INTF_CONFIG2);
if (cmd_mode_cfg->data_compress)
intf_cfg2 |= INTF_CFG2_DCE_DATA_COMPRESS;
DPU_REG_WRITE(&ctx->hw, INTF_CONFIG2, intf_cfg2);
}
static void _setup_intf_ops(struct dpu_hw_intf_ops *ops,
unsigned long cap, const struct dpu_mdss_version *mdss_rev)
{
ops->setup_timing_gen = dpu_hw_intf_setup_timing_engine;
ops->setup_prg_fetch = dpu_hw_intf_setup_prg_fetch;
ops->get_status = dpu_hw_intf_get_status;
ops->enable_timing = dpu_hw_intf_enable_timing_engine;
ops->get_line_count = dpu_hw_intf_get_line_count;
if (cap & BIT(DPU_INTF_INPUT_CTRL))
ops->bind_pingpong_blk = dpu_hw_intf_bind_pingpong_blk;
ops->setup_misr = dpu_hw_intf_setup_misr;
ops->collect_misr = dpu_hw_intf_collect_misr;
if (cap & BIT(DPU_INTF_TE)) {
ops->enable_tearcheck = dpu_hw_intf_enable_te;
ops->disable_tearcheck = dpu_hw_intf_disable_te;
ops->connect_external_te = dpu_hw_intf_connect_external_te;
ops->vsync_sel = dpu_hw_intf_vsync_sel;
ops->disable_autorefresh = dpu_hw_intf_disable_autorefresh;
}
if (mdss_rev->core_major_ver >= 7)
ops->program_intf_cmd_cfg = dpu_hw_intf_program_intf_cmd_cfg;
}
struct dpu_hw_intf *dpu_hw_intf_init(const struct dpu_intf_cfg *cfg,
void __iomem *addr, const struct dpu_mdss_version *mdss_rev)
{
struct dpu_hw_intf *c;
if (cfg->type == INTF_NONE) {
DPU_DEBUG("Skip intf %d with type NONE\n", cfg->id - INTF_0);
return NULL;
}
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return ERR_PTR(-ENOMEM);
c->hw.blk_addr = addr + cfg->base;
c->hw.log_mask = DPU_DBG_MASK_INTF;
/*
* Assign ops
*/
c->idx = cfg->id;
c->cap = cfg;
_setup_intf_ops(&c->ops, c->cap->features, mdss_rev);
return c;
}
void dpu_hw_intf_destroy(struct dpu_hw_intf *intf)
{
kfree(intf);
}