Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
 * Copyright (c) 2022 Ventana Micro Systems Inc.
 */

#include <linux/bitops.h>
#include <linux/kvm_host.h>

#define INSN_OPCODE_MASK	0x007c
#define INSN_OPCODE_SHIFT	2
#define INSN_OPCODE_SYSTEM	28

#define INSN_MASK_WFI		0xffffffff
#define INSN_MATCH_WFI		0x10500073

#define INSN_MATCH_CSRRW	0x1073
#define INSN_MASK_CSRRW		0x707f
#define INSN_MATCH_CSRRS	0x2073
#define INSN_MASK_CSRRS		0x707f
#define INSN_MATCH_CSRRC	0x3073
#define INSN_MASK_CSRRC		0x707f
#define INSN_MATCH_CSRRWI	0x5073
#define INSN_MASK_CSRRWI	0x707f
#define INSN_MATCH_CSRRSI	0x6073
#define INSN_MASK_CSRRSI	0x707f
#define INSN_MATCH_CSRRCI	0x7073
#define INSN_MASK_CSRRCI	0x707f

#define INSN_MATCH_LB		0x3
#define INSN_MASK_LB		0x707f
#define INSN_MATCH_LH		0x1003
#define INSN_MASK_LH		0x707f
#define INSN_MATCH_LW		0x2003
#define INSN_MASK_LW		0x707f
#define INSN_MATCH_LD		0x3003
#define INSN_MASK_LD		0x707f
#define INSN_MATCH_LBU		0x4003
#define INSN_MASK_LBU		0x707f
#define INSN_MATCH_LHU		0x5003
#define INSN_MASK_LHU		0x707f
#define INSN_MATCH_LWU		0x6003
#define INSN_MASK_LWU		0x707f
#define INSN_MATCH_SB		0x23
#define INSN_MASK_SB		0x707f
#define INSN_MATCH_SH		0x1023
#define INSN_MASK_SH		0x707f
#define INSN_MATCH_SW		0x2023
#define INSN_MASK_SW		0x707f
#define INSN_MATCH_SD		0x3023
#define INSN_MASK_SD		0x707f

#define INSN_MATCH_C_LD		0x6000
#define INSN_MASK_C_LD		0xe003
#define INSN_MATCH_C_SD		0xe000
#define INSN_MASK_C_SD		0xe003
#define INSN_MATCH_C_LW		0x4000
#define INSN_MASK_C_LW		0xe003
#define INSN_MATCH_C_SW		0xc000
#define INSN_MASK_C_SW		0xe003
#define INSN_MATCH_C_LDSP	0x6002
#define INSN_MASK_C_LDSP	0xe003
#define INSN_MATCH_C_SDSP	0xe002
#define INSN_MASK_C_SDSP	0xe003
#define INSN_MATCH_C_LWSP	0x4002
#define INSN_MASK_C_LWSP	0xe003
#define INSN_MATCH_C_SWSP	0xc002
#define INSN_MASK_C_SWSP	0xe003

#define INSN_16BIT_MASK		0x3

#define INSN_IS_16BIT(insn)	(((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)

#define INSN_LEN(insn)		(INSN_IS_16BIT(insn) ? 2 : 4)

#ifdef CONFIG_64BIT
#define LOG_REGBYTES		3
#else
#define LOG_REGBYTES		2
#endif
#define REGBYTES		(1 << LOG_REGBYTES)

#define SH_RD			7
#define SH_RS1			15
#define SH_RS2			20
#define SH_RS2C			2
#define MASK_RX			0x1f

#define RV_X(x, s, n)		(((x) >> (s)) & ((1 << (n)) - 1))
#define RVC_LW_IMM(x)		((RV_X(x, 6, 1) << 2) | \
				 (RV_X(x, 10, 3) << 3) | \
				 (RV_X(x, 5, 1) << 6))
#define RVC_LD_IMM(x)		((RV_X(x, 10, 3) << 3) | \
				 (RV_X(x, 5, 2) << 6))
#define RVC_LWSP_IMM(x)		((RV_X(x, 4, 3) << 2) | \
				 (RV_X(x, 12, 1) << 5) | \
				 (RV_X(x, 2, 2) << 6))
#define RVC_LDSP_IMM(x)		((RV_X(x, 5, 2) << 3) | \
				 (RV_X(x, 12, 1) << 5) | \
				 (RV_X(x, 2, 3) << 6))
#define RVC_SWSP_IMM(x)		((RV_X(x, 9, 4) << 2) | \
				 (RV_X(x, 7, 2) << 6))
#define RVC_SDSP_IMM(x)		((RV_X(x, 10, 3) << 3) | \
				 (RV_X(x, 7, 3) << 6))
#define RVC_RS1S(insn)		(8 + RV_X(insn, SH_RD, 3))
#define RVC_RS2S(insn)		(8 + RV_X(insn, SH_RS2C, 3))
#define RVC_RS2(insn)		RV_X(insn, SH_RS2C, 5)

#define SHIFT_RIGHT(x, y)		\
	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))

#define REG_MASK			\
	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))

#define REG_OFFSET(insn, pos)		\
	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)

#define REG_PTR(insn, pos, regs)	\
	((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)))

#define GET_FUNCT3(insn)	(((insn) >> 12) & 7)

#define GET_RS1(insn, regs)	(*REG_PTR(insn, SH_RS1, regs))
#define GET_RS2(insn, regs)	(*REG_PTR(insn, SH_RS2, regs))
#define GET_RS1S(insn, regs)	(*REG_PTR(RVC_RS1S(insn), 0, regs))
#define GET_RS2S(insn, regs)	(*REG_PTR(RVC_RS2S(insn), 0, regs))
#define GET_RS2C(insn, regs)	(*REG_PTR(insn, SH_RS2C, regs))
#define GET_SP(regs)		(*REG_PTR(2, 0, regs))
#define SET_RD(insn, regs, val)	(*REG_PTR(insn, SH_RD, regs) = (val))
#define IMM_I(insn)		((s32)(insn) >> 20)
#define IMM_S(insn)		(((s32)(insn) >> 25 << 5) | \
				 (s32)(((insn) >> 7) & 0x1f))

struct insn_func {
	unsigned long mask;
	unsigned long match;
	/*
	 * Possible return values are as follows:
	 * 1) Returns < 0 for error case
	 * 2) Returns 0 for exit to user-space
	 * 3) Returns 1 to continue with next sepc
	 * 4) Returns 2 to continue with same sepc
	 * 5) Returns 3 to inject illegal instruction trap and continue
	 * 6) Returns 4 to inject virtual instruction trap and continue
	 *
	 * Use enum kvm_insn_return for return values
	 */
	int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
};

static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
			      ulong insn)
{
	struct kvm_cpu_trap utrap = { 0 };

	/* Redirect trap to Guest VCPU */
	utrap.sepc = vcpu->arch.guest_context.sepc;
	utrap.scause = EXC_INST_ILLEGAL;
	utrap.stval = insn;
	utrap.htval = 0;
	utrap.htinst = 0;
	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);

	return 1;
}

static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
			      ulong insn)
{
	struct kvm_cpu_trap utrap = { 0 };

	/* Redirect trap to Guest VCPU */
	utrap.sepc = vcpu->arch.guest_context.sepc;
	utrap.scause = EXC_VIRTUAL_INST_FAULT;
	utrap.stval = insn;
	utrap.htval = 0;
	utrap.htinst = 0;
	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);

	return 1;
}

/**
 * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
 *
 * @vcpu: The VCPU pointer
 */
void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
{
	if (!kvm_arch_vcpu_runnable(vcpu)) {
		kvm_vcpu_srcu_read_unlock(vcpu);
		kvm_vcpu_halt(vcpu);
		kvm_vcpu_srcu_read_lock(vcpu);
	}
}

static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
{
	vcpu->stat.wfi_exit_stat++;
	kvm_riscv_vcpu_wfi(vcpu);
	return KVM_INSN_CONTINUE_NEXT_SEPC;
}

struct csr_func {
	unsigned int base;
	unsigned int count;
	/*
	 * Possible return values are as same as "func" callback in
	 * "struct insn_func".
	 */
	int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
		    unsigned long *val, unsigned long new_val,
		    unsigned long wr_mask);
};

static const struct csr_func csr_funcs[] = {
	KVM_RISCV_VCPU_AIA_CSR_FUNCS
	KVM_RISCV_VCPU_HPMCOUNTER_CSR_FUNCS
};

/**
 * kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space
 *				emulation or in-kernel emulation
 *
 * @vcpu: The VCPU pointer
 * @run:  The VCPU run struct containing the CSR data
 *
 * Returns > 0 upon failure and 0 upon success
 */
int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	ulong insn;

	if (vcpu->arch.csr_decode.return_handled)
		return 0;
	vcpu->arch.csr_decode.return_handled = 1;

	/* Update destination register for CSR reads */
	insn = vcpu->arch.csr_decode.insn;
	if ((insn >> SH_RD) & MASK_RX)
		SET_RD(insn, &vcpu->arch.guest_context,
		       run->riscv_csr.ret_value);

	/* Move to next instruction */
	vcpu->arch.guest_context.sepc += INSN_LEN(insn);

	return 0;
}

static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
{
	int i, rc = KVM_INSN_ILLEGAL_TRAP;
	unsigned int csr_num = insn >> SH_RS2;
	unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
	ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
	const struct csr_func *tcfn, *cfn = NULL;
	ulong val = 0, wr_mask = 0, new_val = 0;

	/* Decode the CSR instruction */
	switch (GET_FUNCT3(insn)) {
	case GET_FUNCT3(INSN_MATCH_CSRRW):
		wr_mask = -1UL;
		new_val = rs1_val;
		break;
	case GET_FUNCT3(INSN_MATCH_CSRRS):
		wr_mask = rs1_val;
		new_val = -1UL;
		break;
	case GET_FUNCT3(INSN_MATCH_CSRRC):
		wr_mask = rs1_val;
		new_val = 0;
		break;
	case GET_FUNCT3(INSN_MATCH_CSRRWI):
		wr_mask = -1UL;
		new_val = rs1_num;
		break;
	case GET_FUNCT3(INSN_MATCH_CSRRSI):
		wr_mask = rs1_num;
		new_val = -1UL;
		break;
	case GET_FUNCT3(INSN_MATCH_CSRRCI):
		wr_mask = rs1_num;
		new_val = 0;
		break;
	default:
		return rc;
	}

	/* Save instruction decode info */
	vcpu->arch.csr_decode.insn = insn;
	vcpu->arch.csr_decode.return_handled = 0;

	/* Update CSR details in kvm_run struct */
	run->riscv_csr.csr_num = csr_num;
	run->riscv_csr.new_value = new_val;
	run->riscv_csr.write_mask = wr_mask;
	run->riscv_csr.ret_value = 0;

	/* Find in-kernel CSR function */
	for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
		tcfn = &csr_funcs[i];
		if ((tcfn->base <= csr_num) &&
		    (csr_num < (tcfn->base + tcfn->count))) {
			cfn = tcfn;
			break;
		}
	}

	/* First try in-kernel CSR emulation */
	if (cfn && cfn->func) {
		rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
		if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
			if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
				run->riscv_csr.ret_value = val;
				vcpu->stat.csr_exit_kernel++;
				kvm_riscv_vcpu_csr_return(vcpu, run);
				rc = KVM_INSN_CONTINUE_SAME_SEPC;
			}
			return rc;
		}
	}

	/* Exit to user-space for CSR emulation */
	if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
		vcpu->stat.csr_exit_user++;
		run->exit_reason = KVM_EXIT_RISCV_CSR;
	}

	return rc;
}

static const struct insn_func system_opcode_funcs[] = {
	{
		.mask  = INSN_MASK_CSRRW,
		.match = INSN_MATCH_CSRRW,
		.func  = csr_insn,
	},
	{
		.mask  = INSN_MASK_CSRRS,
		.match = INSN_MATCH_CSRRS,
		.func  = csr_insn,
	},
	{
		.mask  = INSN_MASK_CSRRC,
		.match = INSN_MATCH_CSRRC,
		.func  = csr_insn,
	},
	{
		.mask  = INSN_MASK_CSRRWI,
		.match = INSN_MATCH_CSRRWI,
		.func  = csr_insn,
	},
	{
		.mask  = INSN_MASK_CSRRSI,
		.match = INSN_MATCH_CSRRSI,
		.func  = csr_insn,
	},
	{
		.mask  = INSN_MASK_CSRRCI,
		.match = INSN_MATCH_CSRRCI,
		.func  = csr_insn,
	},
	{
		.mask  = INSN_MASK_WFI,
		.match = INSN_MATCH_WFI,
		.func  = wfi_insn,
	},
};

static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
			      ulong insn)
{
	int i, rc = KVM_INSN_ILLEGAL_TRAP;
	const struct insn_func *ifn;

	for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
		ifn = &system_opcode_funcs[i];
		if ((insn & ifn->mask) == ifn->match) {
			rc = ifn->func(vcpu, run, insn);
			break;
		}
	}

	switch (rc) {
	case KVM_INSN_ILLEGAL_TRAP:
		return truly_illegal_insn(vcpu, run, insn);
	case KVM_INSN_VIRTUAL_TRAP:
		return truly_virtual_insn(vcpu, run, insn);
	case KVM_INSN_CONTINUE_NEXT_SEPC:
		vcpu->arch.guest_context.sepc += INSN_LEN(insn);
		break;
	default:
		break;
	}

	return (rc <= 0) ? rc : 1;
}

/**
 * kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap
 *
 * @vcpu: The VCPU pointer
 * @run:  The VCPU run struct containing the mmio data
 * @trap: Trap details
 *
 * Returns > 0 to continue run-loop
 * Returns   0 to exit run-loop and handle in user-space.
 * Returns < 0 to report failure and exit run-loop
 */
int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
				struct kvm_cpu_trap *trap)
{
	unsigned long insn = trap->stval;
	struct kvm_cpu_trap utrap = { 0 };
	struct kvm_cpu_context *ct;

	if (unlikely(INSN_IS_16BIT(insn))) {
		if (insn == 0) {
			ct = &vcpu->arch.guest_context;
			insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
							  ct->sepc,
							  &utrap);
			if (utrap.scause) {
				utrap.sepc = ct->sepc;
				kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
				return 1;
			}
		}
		if (INSN_IS_16BIT(insn))
			return truly_illegal_insn(vcpu, run, insn);
	}

	switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
	case INSN_OPCODE_SYSTEM:
		return system_opcode_insn(vcpu, run, insn);
	default:
		return truly_illegal_insn(vcpu, run, insn);
	}
}

/**
 * kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction
 *
 * @vcpu: The VCPU pointer
 * @run:  The VCPU run struct containing the mmio data
 * @fault_addr: Guest physical address to load
 * @htinst: Transformed encoding of the load instruction
 *
 * Returns > 0 to continue run-loop
 * Returns   0 to exit run-loop and handle in user-space.
 * Returns < 0 to report failure and exit run-loop
 */
int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
			     unsigned long fault_addr,
			     unsigned long htinst)
{
	u8 data_buf[8];
	unsigned long insn;
	int shift = 0, len = 0, insn_len = 0;
	struct kvm_cpu_trap utrap = { 0 };
	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;

	/* Determine trapped instruction */
	if (htinst & 0x1) {
		/*
		 * Bit[0] == 1 implies trapped instruction value is
		 * transformed instruction or custom instruction.
		 */
		insn = htinst | INSN_16BIT_MASK;
		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
	} else {
		/*
		 * Bit[0] == 0 implies trapped instruction value is
		 * zero or special value.
		 */
		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
						  &utrap);
		if (utrap.scause) {
			/* Redirect trap if we failed to read instruction */
			utrap.sepc = ct->sepc;
			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
			return 1;
		}
		insn_len = INSN_LEN(insn);
	}

	/* Decode length of MMIO and shift */
	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
		len = 4;
		shift = 8 * (sizeof(ulong) - len);
	} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
		len = 1;
		shift = 8 * (sizeof(ulong) - len);
	} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
		len = 1;
		shift = 8 * (sizeof(ulong) - len);
#ifdef CONFIG_64BIT
	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
		len = 8;
		shift = 8 * (sizeof(ulong) - len);
	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
		len = 4;
#endif
	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
		len = 2;
		shift = 8 * (sizeof(ulong) - len);
	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
		len = 2;
#ifdef CONFIG_64BIT
	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
		len = 8;
		shift = 8 * (sizeof(ulong) - len);
		insn = RVC_RS2S(insn) << SH_RD;
	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
		   ((insn >> SH_RD) & 0x1f)) {
		len = 8;
		shift = 8 * (sizeof(ulong) - len);
#endif
	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
		len = 4;
		shift = 8 * (sizeof(ulong) - len);
		insn = RVC_RS2S(insn) << SH_RD;
	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
		   ((insn >> SH_RD) & 0x1f)) {
		len = 4;
		shift = 8 * (sizeof(ulong) - len);
	} else {
		return -EOPNOTSUPP;
	}

	/* Fault address should be aligned to length of MMIO */
	if (fault_addr & (len - 1))
		return -EIO;

	/* Save instruction decode info */
	vcpu->arch.mmio_decode.insn = insn;
	vcpu->arch.mmio_decode.insn_len = insn_len;
	vcpu->arch.mmio_decode.shift = shift;
	vcpu->arch.mmio_decode.len = len;
	vcpu->arch.mmio_decode.return_handled = 0;

	/* Update MMIO details in kvm_run struct */
	run->mmio.is_write = false;
	run->mmio.phys_addr = fault_addr;
	run->mmio.len = len;

	/* Try to handle MMIO access in the kernel */
	if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
		/* Successfully handled MMIO access in the kernel so resume */
		memcpy(run->mmio.data, data_buf, len);
		vcpu->stat.mmio_exit_kernel++;
		kvm_riscv_vcpu_mmio_return(vcpu, run);
		return 1;
	}

	/* Exit to userspace for MMIO emulation */
	vcpu->stat.mmio_exit_user++;
	run->exit_reason = KVM_EXIT_MMIO;

	return 0;
}

/**
 * kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction
 *
 * @vcpu: The VCPU pointer
 * @run:  The VCPU run struct containing the mmio data
 * @fault_addr: Guest physical address to store
 * @htinst: Transformed encoding of the store instruction
 *
 * Returns > 0 to continue run-loop
 * Returns   0 to exit run-loop and handle in user-space.
 * Returns < 0 to report failure and exit run-loop
 */
int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
			      unsigned long fault_addr,
			      unsigned long htinst)
{
	u8 data8;
	u16 data16;
	u32 data32;
	u64 data64;
	ulong data;
	unsigned long insn;
	int len = 0, insn_len = 0;
	struct kvm_cpu_trap utrap = { 0 };
	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;

	/* Determine trapped instruction */
	if (htinst & 0x1) {
		/*
		 * Bit[0] == 1 implies trapped instruction value is
		 * transformed instruction or custom instruction.
		 */
		insn = htinst | INSN_16BIT_MASK;
		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
	} else {
		/*
		 * Bit[0] == 0 implies trapped instruction value is
		 * zero or special value.
		 */
		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
						  &utrap);
		if (utrap.scause) {
			/* Redirect trap if we failed to read instruction */
			utrap.sepc = ct->sepc;
			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
			return 1;
		}
		insn_len = INSN_LEN(insn);
	}

	data = GET_RS2(insn, &vcpu->arch.guest_context);
	data8 = data16 = data32 = data64 = data;

	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
		len = 4;
	} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
		len = 1;
#ifdef CONFIG_64BIT
	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
		len = 8;
#endif
	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
		len = 2;
#ifdef CONFIG_64BIT
	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
		len = 8;
		data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
		   ((insn >> SH_RD) & 0x1f)) {
		len = 8;
		data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
#endif
	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
		len = 4;
		data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
		   ((insn >> SH_RD) & 0x1f)) {
		len = 4;
		data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
	} else {
		return -EOPNOTSUPP;
	}

	/* Fault address should be aligned to length of MMIO */
	if (fault_addr & (len - 1))
		return -EIO;

	/* Save instruction decode info */
	vcpu->arch.mmio_decode.insn = insn;
	vcpu->arch.mmio_decode.insn_len = insn_len;
	vcpu->arch.mmio_decode.shift = 0;
	vcpu->arch.mmio_decode.len = len;
	vcpu->arch.mmio_decode.return_handled = 0;

	/* Copy data to kvm_run instance */
	switch (len) {
	case 1:
		*((u8 *)run->mmio.data) = data8;
		break;
	case 2:
		*((u16 *)run->mmio.data) = data16;
		break;
	case 4:
		*((u32 *)run->mmio.data) = data32;
		break;
	case 8:
		*((u64 *)run->mmio.data) = data64;
		break;
	default:
		return -EOPNOTSUPP;
	}

	/* Update MMIO details in kvm_run struct */
	run->mmio.is_write = true;
	run->mmio.phys_addr = fault_addr;
	run->mmio.len = len;

	/* Try to handle MMIO access in the kernel */
	if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
			      fault_addr, len, run->mmio.data)) {
		/* Successfully handled MMIO access in the kernel so resume */
		vcpu->stat.mmio_exit_kernel++;
		kvm_riscv_vcpu_mmio_return(vcpu, run);
		return 1;
	}

	/* Exit to userspace for MMIO emulation */
	vcpu->stat.mmio_exit_user++;
	run->exit_reason = KVM_EXIT_MMIO;

	return 0;
}

/**
 * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
 *			     or in-kernel IO emulation
 *
 * @vcpu: The VCPU pointer
 * @run:  The VCPU run struct containing the mmio data
 */
int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	u8 data8;
	u16 data16;
	u32 data32;
	u64 data64;
	ulong insn;
	int len, shift;

	if (vcpu->arch.mmio_decode.return_handled)
		return 0;

	vcpu->arch.mmio_decode.return_handled = 1;
	insn = vcpu->arch.mmio_decode.insn;

	if (run->mmio.is_write)
		goto done;

	len = vcpu->arch.mmio_decode.len;
	shift = vcpu->arch.mmio_decode.shift;

	switch (len) {
	case 1:
		data8 = *((u8 *)run->mmio.data);
		SET_RD(insn, &vcpu->arch.guest_context,
			(ulong)data8 << shift >> shift);
		break;
	case 2:
		data16 = *((u16 *)run->mmio.data);
		SET_RD(insn, &vcpu->arch.guest_context,
			(ulong)data16 << shift >> shift);
		break;
	case 4:
		data32 = *((u32 *)run->mmio.data);
		SET_RD(insn, &vcpu->arch.guest_context,
			(ulong)data32 << shift >> shift);
		break;
	case 8:
		data64 = *((u64 *)run->mmio.data);
		SET_RD(insn, &vcpu->arch.guest_context,
			(ulong)data64 << shift >> shift);
		break;
	default:
		return -EOPNOTSUPP;
	}

done:
	/* Move to next instruction */
	vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;

	return 0;
}