Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
// SPDX-License-Identifier: GPL-2.0
/*
 * vgic init sequence tests
 *
 * Copyright (C) 2020, Red Hat, Inc.
 */
#define _GNU_SOURCE
#include <linux/kernel.h>
#include <sys/syscall.h>
#include <asm/kvm.h>
#include <asm/kvm_para.h>

#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include "vgic.h"

#define NR_VCPUS		4

#define REG_OFFSET(vcpu, offset) (((uint64_t)vcpu << 32) | offset)

#define GICR_TYPER 0x8

#define VGIC_DEV_IS_V2(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V2)
#define VGIC_DEV_IS_V3(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V3)

struct vm_gic {
	struct kvm_vm *vm;
	int gic_fd;
	uint32_t gic_dev_type;
};

static uint64_t max_phys_size;

/*
 * Helpers to access a redistributor register and verify the ioctl() failed or
 * succeeded as expected, and provided the correct value on success.
 */
static void v3_redist_reg_get_errno(int gicv3_fd, int vcpu, int offset,
				    int want, const char *msg)
{
	uint32_t ignored_val;
	int ret = __kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
					REG_OFFSET(vcpu, offset), &ignored_val);

	TEST_ASSERT(ret && errno == want, "%s; want errno = %d", msg, want);
}

static void v3_redist_reg_get(int gicv3_fd, int vcpu, int offset, uint32_t want,
			      const char *msg)
{
	uint32_t val;

	kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
			    REG_OFFSET(vcpu, offset), &val);
	TEST_ASSERT(val == want, "%s; want '0x%x', got '0x%x'", msg, want, val);
}

/* dummy guest code */
static void guest_code(void)
{
	GUEST_SYNC(0);
	GUEST_SYNC(1);
	GUEST_SYNC(2);
	GUEST_DONE();
}

/* we don't want to assert on run execution, hence that helper */
static int run_vcpu(struct kvm_vcpu *vcpu)
{
	return __vcpu_run(vcpu) ? -errno : 0;
}

static struct vm_gic vm_gic_create_with_vcpus(uint32_t gic_dev_type,
					      uint32_t nr_vcpus,
					      struct kvm_vcpu *vcpus[])
{
	struct vm_gic v;

	v.gic_dev_type = gic_dev_type;
	v.vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus);
	v.gic_fd = kvm_create_device(v.vm, gic_dev_type);

	return v;
}

static void vm_gic_destroy(struct vm_gic *v)
{
	close(v->gic_fd);
	kvm_vm_free(v->vm);
}

struct vgic_region_attr {
	uint64_t attr;
	uint64_t size;
	uint64_t alignment;
};

struct vgic_region_attr gic_v3_dist_region = {
	.attr = KVM_VGIC_V3_ADDR_TYPE_DIST,
	.size = 0x10000,
	.alignment = 0x10000,
};

struct vgic_region_attr gic_v3_redist_region = {
	.attr = KVM_VGIC_V3_ADDR_TYPE_REDIST,
	.size = NR_VCPUS * 0x20000,
	.alignment = 0x10000,
};

struct vgic_region_attr gic_v2_dist_region = {
	.attr = KVM_VGIC_V2_ADDR_TYPE_DIST,
	.size = 0x1000,
	.alignment = 0x1000,
};

struct vgic_region_attr gic_v2_cpu_region = {
	.attr = KVM_VGIC_V2_ADDR_TYPE_CPU,
	.size = 0x2000,
	.alignment = 0x1000,
};

/**
 * Helper routine that performs KVM device tests in general. Eventually the
 * ARM_VGIC (GICv2 or GICv3) device gets created with an overlapping
 * DIST/REDIST (or DIST/CPUIF for GICv2). Assumption is 4 vcpus are going to be
 * used hence the overlap. In the case of GICv3, A RDIST region is set at @0x0
 * and a DIST region is set @0x70000. The GICv2 case sets a CPUIF @0x0 and a
 * DIST region @0x1000.
 */
static void subtest_dist_rdist(struct vm_gic *v)
{
	int ret;
	uint64_t addr;
	struct vgic_region_attr rdist; /* CPU interface in GICv2*/
	struct vgic_region_attr dist;

	rdist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_redist_region
						: gic_v2_cpu_region;
	dist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_dist_region
						: gic_v2_dist_region;

	/* Check existing group/attributes */
	kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr);

	kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr);

	/* check non existing attribute */
	ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, -1);
	TEST_ASSERT(ret && errno == ENXIO, "attribute not supported");

	/* misaligned DIST and REDIST address settings */
	addr = dist.alignment / 0x10;
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    dist.attr, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "GIC dist base not aligned");

	addr = rdist.alignment / 0x10;
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    rdist.attr, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "GIC redist/cpu base not aligned");

	/* out of range address */
	addr = max_phys_size;
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    dist.attr, &addr);
	TEST_ASSERT(ret && errno == E2BIG, "dist address beyond IPA limit");

	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    rdist.attr, &addr);
	TEST_ASSERT(ret && errno == E2BIG, "redist address beyond IPA limit");

	/* Space for half a rdist (a rdist is: 2 * rdist.alignment). */
	addr = max_phys_size - dist.alignment;
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    rdist.attr, &addr);
	TEST_ASSERT(ret && errno == E2BIG,
			"half of the redist is beyond IPA limit");

	/* set REDIST base address @0x0*/
	addr = 0x00000;
	kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    rdist.attr, &addr);

	/* Attempt to create a second legacy redistributor region */
	addr = 0xE0000;
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    rdist.attr, &addr);
	TEST_ASSERT(ret && errno == EEXIST, "GIC redist base set again");

	ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				     KVM_VGIC_V3_ADDR_TYPE_REDIST);
	if (!ret) {
		/* Attempt to mix legacy and new redistributor regions */
		addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 0, 0);
		ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
					    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
		TEST_ASSERT(ret && errno == EINVAL,
			    "attempt to mix GICv3 REDIST and REDIST_REGION");
	}

	/*
	 * Set overlapping DIST / REDIST, cannot be detected here. Will be detected
	 * on first vcpu run instead.
	 */
	addr = rdist.size - rdist.alignment;
	kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    dist.attr, &addr);
}

/* Test the new REDIST region API */
static void subtest_v3_redist_regions(struct vm_gic *v)
{
	uint64_t addr, expected_addr;
	int ret;

	ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST);
	TEST_ASSERT(!ret, "Multiple redist regions advertised");

	addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 2, 0);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with flags != 0");

	addr = REDIST_REGION_ATTR_ADDR(0, 0x100000, 0, 0);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with count== 0");

	addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL,
		    "attempt to register the first rdist region with index != 0");

	addr = REDIST_REGION_ATTR_ADDR(2, 0x201000, 0, 1);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "rdist region with misaligned address");

	addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0);
	kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "register an rdist region with already used index");

	addr = REDIST_REGION_ATTR_ADDR(1, 0x210000, 0, 2);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL,
		    "register an rdist region overlapping with another one");

	addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 2);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "register redist region with index not +1");

	addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1);
	kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	addr = REDIST_REGION_ATTR_ADDR(1, max_phys_size, 0, 2);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == E2BIG,
		    "register redist region with base address beyond IPA range");

	/* The last redist is above the pa range. */
	addr = REDIST_REGION_ATTR_ADDR(2, max_phys_size - 0x30000, 0, 2);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == E2BIG,
		    "register redist region with top address beyond IPA range");

	addr = 0x260000;
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr);
	TEST_ASSERT(ret && errno == EINVAL,
		    "Mix KVM_VGIC_V3_ADDR_TYPE_REDIST and REDIST_REGION");

	/*
	 * Now there are 2 redist regions:
	 * region 0 @ 0x200000 2 redists
	 * region 1 @ 0x240000 1 redist
	 * Attempt to read their characteristics
	 */

	addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 0);
	expected_addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0);
	ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #0");

	addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 1);
	expected_addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1);
	ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #1");

	addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 2);
	ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == ENOENT, "read characteristics of non existing region");

	addr = 0x260000;
	kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_DIST, &addr);

	addr = REDIST_REGION_ATTR_ADDR(1, 0x260000, 0, 2);
	ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "register redist region colliding with dist");
}

/*
 * VGIC KVM device is created and initialized before the secondary CPUs
 * get created
 */
static void test_vgic_then_vcpus(uint32_t gic_dev_type)
{
	struct kvm_vcpu *vcpus[NR_VCPUS];
	struct vm_gic v;
	int ret, i;

	v = vm_gic_create_with_vcpus(gic_dev_type, 1, vcpus);

	subtest_dist_rdist(&v);

	/* Add the rest of the VCPUs */
	for (i = 1; i < NR_VCPUS; ++i)
		vcpus[i] = vm_vcpu_add(v.vm, i, guest_code);

	ret = run_vcpu(vcpus[3]);
	TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run");

	vm_gic_destroy(&v);
}

/* All the VCPUs are created before the VGIC KVM device gets initialized */
static void test_vcpus_then_vgic(uint32_t gic_dev_type)
{
	struct kvm_vcpu *vcpus[NR_VCPUS];
	struct vm_gic v;
	int ret;

	v = vm_gic_create_with_vcpus(gic_dev_type, NR_VCPUS, vcpus);

	subtest_dist_rdist(&v);

	ret = run_vcpu(vcpus[3]);
	TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run");

	vm_gic_destroy(&v);
}

static void test_v3_new_redist_regions(void)
{
	struct kvm_vcpu *vcpus[NR_VCPUS];
	void *dummy = NULL;
	struct vm_gic v;
	uint64_t addr;
	int ret;

	v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
	subtest_v3_redist_regions(&v);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
			    KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);

	ret = run_vcpu(vcpus[3]);
	TEST_ASSERT(ret == -ENXIO, "running without sufficient number of rdists");
	vm_gic_destroy(&v);

	/* step2 */

	v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
	subtest_v3_redist_regions(&v);

	addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	ret = run_vcpu(vcpus[3]);
	TEST_ASSERT(ret == -EBUSY, "running without vgic explicit init");

	vm_gic_destroy(&v);

	/* step 3 */

	v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
	subtest_v3_redist_regions(&v);

	ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, dummy);
	TEST_ASSERT(ret && errno == EFAULT,
		    "register a third region allowing to cover the 4 vcpus");

	addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
			    KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);

	ret = run_vcpu(vcpus[3]);
	TEST_ASSERT(!ret, "vcpu run");

	vm_gic_destroy(&v);
}

static void test_v3_typer_accesses(void)
{
	struct vm_gic v;
	uint64_t addr;
	int ret, i;

	v.vm = vm_create(NR_VCPUS);
	(void)vm_vcpu_add(v.vm, 0, guest_code);

	v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3);

	(void)vm_vcpu_add(v.vm, 3, guest_code);

	v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EINVAL,
				"attempting to read GICR_TYPER of non created vcpu");

	(void)vm_vcpu_add(v.vm, 1, guest_code);

	v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EBUSY,
				"read GICR_TYPER before GIC initialized");

	(void)vm_vcpu_add(v.vm, 2, guest_code);

	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
			    KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);

	for (i = 0; i < NR_VCPUS ; i++) {
		v3_redist_reg_get(v.gic_fd, i, GICR_TYPER, i * 0x100,
				  "read GICR_TYPER before rdist region setting");
	}

	addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	/* The 2 first rdists should be put there (vcpu 0 and 3) */
	v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x0, "read typer of rdist #0");
	v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #1");

	addr = REDIST_REGION_ATTR_ADDR(10, 0x100000, 0, 1);
	ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
	TEST_ASSERT(ret && errno == EINVAL, "collision with previous rdist region");

	v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100,
			  "no redist region attached to vcpu #1 yet, last cannot be returned");
	v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200,
			  "no redist region attached to vcpu #2, last cannot be returned");

	addr = REDIST_REGION_ATTR_ADDR(10, 0x20000, 0, 1);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1");
	v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210,
			  "read typer of rdist #1, last properly returned");

	vm_gic_destroy(&v);
}

static struct vm_gic vm_gic_v3_create_with_vcpuids(int nr_vcpus,
						   uint32_t vcpuids[])
{
	struct vm_gic v;
	int i;

	v.vm = vm_create(nr_vcpus);
	for (i = 0; i < nr_vcpus; i++)
		vm_vcpu_add(v.vm, vcpuids[i], guest_code);

	v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3);

	return v;
}

/**
 * Test GICR_TYPER last bit with new redist regions
 * rdist regions #1 and #2 are contiguous
 * rdist region #0 @0x100000 2 rdist capacity
 *     rdists: 0, 3 (Last)
 * rdist region #1 @0x240000 2 rdist capacity
 *     rdists:  5, 4 (Last)
 * rdist region #2 @0x200000 2 rdist capacity
 *     rdists: 1, 2
 */
static void test_v3_last_bit_redist_regions(void)
{
	uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 };
	struct vm_gic v;
	uint64_t addr;

	v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids);

	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
			    KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);

	addr = REDIST_REGION_ATTR_ADDR(2, 0x100000, 0, 0);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	addr = REDIST_REGION_ATTR_ADDR(2, 0x240000, 0, 1);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 2);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);

	v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0");
	v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1");
	v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, "read typer of rdist #2");
	v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #3");
	v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #5");
	v3_redist_reg_get(v.gic_fd, 4, GICR_TYPER, 0x410, "read typer of rdist #4");

	vm_gic_destroy(&v);
}

/* Test last bit with legacy region */
static void test_v3_last_bit_single_rdist(void)
{
	uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 };
	struct vm_gic v;
	uint64_t addr;

	v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids);

	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
			    KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);

	addr = 0x10000;
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr);

	v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0");
	v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x300, "read typer of rdist #1");
	v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #2");
	v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #3");
	v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, "read typer of rdist #3");

	vm_gic_destroy(&v);
}

/* Uses the legacy REDIST region API. */
static void test_v3_redist_ipa_range_check_at_vcpu_run(void)
{
	struct kvm_vcpu *vcpus[NR_VCPUS];
	struct vm_gic v;
	int ret, i;
	uint64_t addr;

	v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, 1, vcpus);

	/* Set space for 3 redists, we have 1 vcpu, so this succeeds. */
	addr = max_phys_size - (3 * 2 * 0x10000);
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr);

	addr = 0x00000;
	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_V3_ADDR_TYPE_DIST, &addr);

	/* Add the rest of the VCPUs */
	for (i = 1; i < NR_VCPUS; ++i)
		vcpus[i] = vm_vcpu_add(v.vm, i, guest_code);

	kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
			    KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);

	/* Attempt to run a vcpu without enough redist space. */
	ret = run_vcpu(vcpus[2]);
	TEST_ASSERT(ret && errno == EINVAL,
		"redist base+size above PA range detected on 1st vcpu run");

	vm_gic_destroy(&v);
}

static void test_v3_its_region(void)
{
	struct kvm_vcpu *vcpus[NR_VCPUS];
	struct vm_gic v;
	uint64_t addr;
	int its_fd, ret;

	v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
	its_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_ITS);

	addr = 0x401000;
	ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_ITS_ADDR_TYPE, &addr);
	TEST_ASSERT(ret && errno == EINVAL,
		"ITS region with misaligned address");

	addr = max_phys_size;
	ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_ITS_ADDR_TYPE, &addr);
	TEST_ASSERT(ret && errno == E2BIG,
		"register ITS region with base address beyond IPA range");

	addr = max_phys_size - 0x10000;
	ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_ITS_ADDR_TYPE, &addr);
	TEST_ASSERT(ret && errno == E2BIG,
		"Half of ITS region is beyond IPA range");

	/* This one succeeds setting the ITS base */
	addr = 0x400000;
	kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
			    KVM_VGIC_ITS_ADDR_TYPE, &addr);

	addr = 0x300000;
	ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
				    KVM_VGIC_ITS_ADDR_TYPE, &addr);
	TEST_ASSERT(ret && errno == EEXIST, "ITS base set again");

	close(its_fd);
	vm_gic_destroy(&v);
}

/*
 * Returns 0 if it's possible to create GIC device of a given type (V2 or V3).
 */
int test_kvm_device(uint32_t gic_dev_type)
{
	struct kvm_vcpu *vcpus[NR_VCPUS];
	struct vm_gic v;
	uint32_t other;
	int ret;

	v.vm = vm_create_with_vcpus(NR_VCPUS, guest_code, vcpus);

	/* try to create a non existing KVM device */
	ret = __kvm_test_create_device(v.vm, 0);
	TEST_ASSERT(ret && errno == ENODEV, "unsupported device");

	/* trial mode */
	ret = __kvm_test_create_device(v.vm, gic_dev_type);
	if (ret)
		return ret;
	v.gic_fd = kvm_create_device(v.vm, gic_dev_type);

	ret = __kvm_create_device(v.vm, gic_dev_type);
	TEST_ASSERT(ret < 0 && errno == EEXIST, "create GIC device twice");

	/* try to create the other gic_dev_type */
	other = VGIC_DEV_IS_V2(gic_dev_type) ? KVM_DEV_TYPE_ARM_VGIC_V3
					     : KVM_DEV_TYPE_ARM_VGIC_V2;

	if (!__kvm_test_create_device(v.vm, other)) {
		ret = __kvm_create_device(v.vm, other);
		TEST_ASSERT(ret < 0 && (errno == EINVAL || errno == EEXIST),
				"create GIC device while other version exists");
	}

	vm_gic_destroy(&v);

	return 0;
}

void run_tests(uint32_t gic_dev_type)
{
	test_vcpus_then_vgic(gic_dev_type);
	test_vgic_then_vcpus(gic_dev_type);

	if (VGIC_DEV_IS_V3(gic_dev_type)) {
		test_v3_new_redist_regions();
		test_v3_typer_accesses();
		test_v3_last_bit_redist_regions();
		test_v3_last_bit_single_rdist();
		test_v3_redist_ipa_range_check_at_vcpu_run();
		test_v3_its_region();
	}
}

int main(int ac, char **av)
{
	int ret;
	int pa_bits;
	int cnt_impl = 0;

	pa_bits = vm_guest_mode_params[VM_MODE_DEFAULT].pa_bits;
	max_phys_size = 1ULL << pa_bits;

	ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V3);
	if (!ret) {
		pr_info("Running GIC_v3 tests.\n");
		run_tests(KVM_DEV_TYPE_ARM_VGIC_V3);
		cnt_impl++;
	}

	ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V2);
	if (!ret) {
		pr_info("Running GIC_v2 tests.\n");
		run_tests(KVM_DEV_TYPE_ARM_VGIC_V2);
		cnt_impl++;
	}

	if (!cnt_impl) {
		print_skip("No GICv2 nor GICv3 support");
		exit(KSFT_SKIP);
	}
	return 0;
}