Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | /* * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* * GK20A does not have dedicated video memory, and to accurately represent this * fact Nouveau will not create a RAM device for it. Therefore its instmem * implementation must be done directly on top of system memory, while * preserving coherency for read and write operations. * * Instmem can be allocated through two means: * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory * pages contiguous to the GPU. This is the preferred way. * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically * contiguous memory. * * In both cases CPU read and writes are performed by creating a write-combined * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To * be conservative we do this every time we acquire or release an instobj, but * ideally L2 management should be handled at a higher level. * * To improve performance, CPU mappings are not removed upon instobj release. * Instead they are placed into a LRU list to be recycled when the mapped space * goes beyond a certain threshold. At the moment this limit is 1MB. */ #include "priv.h" #include <core/memory.h> #include <core/tegra.h> #include <subdev/ltc.h> #include <subdev/mmu.h> struct gk20a_instobj { struct nvkm_memory memory; struct nvkm_mm_node *mn; struct gk20a_instmem *imem; /* CPU mapping */ u32 *vaddr; }; #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) /* * Used for objects allocated using the DMA API */ struct gk20a_instobj_dma { struct gk20a_instobj base; dma_addr_t handle; struct nvkm_mm_node r; }; #define gk20a_instobj_dma(p) \ container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) /* * Used for objects flattened using the IOMMU API */ struct gk20a_instobj_iommu { struct gk20a_instobj base; /* to link into gk20a_instmem::vaddr_lru */ struct list_head vaddr_node; /* how many clients are using vaddr? */ u32 use_cpt; /* will point to the higher half of pages */ dma_addr_t *dma_addrs; /* array of base.mem->size pages (+ dma_addr_ts) */ struct page *pages[]; }; #define gk20a_instobj_iommu(p) \ container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) struct gk20a_instmem { struct nvkm_instmem base; /* protects vaddr_* and gk20a_instobj::vaddr* */ struct mutex lock; /* CPU mappings LRU */ unsigned int vaddr_use; unsigned int vaddr_max; struct list_head vaddr_lru; /* Only used if IOMMU if present */ struct mutex *mm_mutex; struct nvkm_mm *mm; struct iommu_domain *domain; unsigned long iommu_pgshift; u16 iommu_bit; /* Only used by DMA API */ unsigned long attrs; }; #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) static enum nvkm_memory_target gk20a_instobj_target(struct nvkm_memory *memory) { return NVKM_MEM_TARGET_NCOH; } static u8 gk20a_instobj_page(struct nvkm_memory *memory) { return 12; } static u64 gk20a_instobj_addr(struct nvkm_memory *memory) { return (u64)gk20a_instobj(memory)->mn->offset << 12; } static u64 gk20a_instobj_size(struct nvkm_memory *memory) { return (u64)gk20a_instobj(memory)->mn->length << 12; } /* * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held. */ static void gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj) { struct gk20a_instmem *imem = obj->base.imem; /* there should not be any user left... */ WARN_ON(obj->use_cpt); list_del(&obj->vaddr_node); vunmap(obj->base.vaddr); obj->base.vaddr = NULL; imem->vaddr_use -= nvkm_memory_size(&obj->base.memory); nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, imem->vaddr_max); } /* * Must be called while holding gk20a_instmem::lock */ static void gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) { while (imem->vaddr_use + size > imem->vaddr_max) { /* no candidate that can be unmapped, abort... */ if (list_empty(&imem->vaddr_lru)) break; gk20a_instobj_iommu_recycle_vaddr( list_first_entry(&imem->vaddr_lru, struct gk20a_instobj_iommu, vaddr_node)); } } static void __iomem * gk20a_instobj_acquire_dma(struct nvkm_memory *memory) { struct gk20a_instobj *node = gk20a_instobj(memory); struct gk20a_instmem *imem = node->imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; nvkm_ltc_flush(ltc); return node->vaddr; } static void __iomem * gk20a_instobj_acquire_iommu(struct nvkm_memory *memory) { struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); struct gk20a_instmem *imem = node->base.imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; const u64 size = nvkm_memory_size(memory); nvkm_ltc_flush(ltc); mutex_lock(&imem->lock); if (node->base.vaddr) { if (!node->use_cpt) { /* remove from LRU list since mapping in use again */ list_del(&node->vaddr_node); } goto out; } /* try to free some address space if we reached the limit */ gk20a_instmem_vaddr_gc(imem, size); /* map the pages */ node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP, pgprot_writecombine(PAGE_KERNEL)); if (!node->base.vaddr) { nvkm_error(&imem->base.subdev, "cannot map instobj - " "this is not going to end well...\n"); goto out; } imem->vaddr_use += size; nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, imem->vaddr_max); out: node->use_cpt++; mutex_unlock(&imem->lock); return node->base.vaddr; } static void gk20a_instobj_release_dma(struct nvkm_memory *memory) { struct gk20a_instobj *node = gk20a_instobj(memory); struct gk20a_instmem *imem = node->imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; /* in case we got a write-combined mapping */ wmb(); nvkm_ltc_invalidate(ltc); } static void gk20a_instobj_release_iommu(struct nvkm_memory *memory) { struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); struct gk20a_instmem *imem = node->base.imem; struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; mutex_lock(&imem->lock); /* we should at least have one user to release... */ if (WARN_ON(node->use_cpt == 0)) goto out; /* add unused objs to the LRU list to recycle their mapping */ if (--node->use_cpt == 0) list_add_tail(&node->vaddr_node, &imem->vaddr_lru); out: mutex_unlock(&imem->lock); wmb(); nvkm_ltc_invalidate(ltc); } static u32 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) { struct gk20a_instobj *node = gk20a_instobj(memory); return node->vaddr[offset / 4]; } static void gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) { struct gk20a_instobj *node = gk20a_instobj(memory); node->vaddr[offset / 4] = data; } static int gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc) { struct gk20a_instobj *node = gk20a_instobj(memory); struct nvkm_vmm_map map = { .memory = &node->memory, .offset = offset, .mem = node->mn, }; return nvkm_vmm_map(vmm, vma, argv, argc, &map); } static void * gk20a_instobj_dtor_dma(struct nvkm_memory *memory) { struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); struct gk20a_instmem *imem = node->base.imem; struct device *dev = imem->base.subdev.device->dev; if (unlikely(!node->base.vaddr)) goto out; dma_free_attrs(dev, (u64)node->base.mn->length << PAGE_SHIFT, node->base.vaddr, node->handle, imem->attrs); out: return node; } static void * gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) { struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); struct gk20a_instmem *imem = node->base.imem; struct device *dev = imem->base.subdev.device->dev; struct nvkm_mm_node *r = node->base.mn; int i; if (unlikely(!r)) goto out; mutex_lock(&imem->lock); /* vaddr has already been recycled */ if (node->base.vaddr) gk20a_instobj_iommu_recycle_vaddr(node); mutex_unlock(&imem->lock); /* clear IOMMU bit to unmap pages */ r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift); /* Unmap pages from GPU address space and free them */ for (i = 0; i < node->base.mn->length; i++) { iommu_unmap(imem->domain, (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(node->pages[i]); } /* Release area from GPU address space */ mutex_lock(imem->mm_mutex); nvkm_mm_free(imem->mm, &r); mutex_unlock(imem->mm_mutex); out: return node; } static const struct nvkm_memory_func gk20a_instobj_func_dma = { .dtor = gk20a_instobj_dtor_dma, .target = gk20a_instobj_target, .page = gk20a_instobj_page, .addr = gk20a_instobj_addr, .size = gk20a_instobj_size, .acquire = gk20a_instobj_acquire_dma, .release = gk20a_instobj_release_dma, .map = gk20a_instobj_map, }; static const struct nvkm_memory_func gk20a_instobj_func_iommu = { .dtor = gk20a_instobj_dtor_iommu, .target = gk20a_instobj_target, .page = gk20a_instobj_page, .addr = gk20a_instobj_addr, .size = gk20a_instobj_size, .acquire = gk20a_instobj_acquire_iommu, .release = gk20a_instobj_release_iommu, .map = gk20a_instobj_map, }; static const struct nvkm_memory_ptrs gk20a_instobj_ptrs = { .rd32 = gk20a_instobj_rd32, .wr32 = gk20a_instobj_wr32, }; static int gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, struct gk20a_instobj **_node) { struct gk20a_instobj_dma *node; struct nvkm_subdev *subdev = &imem->base.subdev; struct device *dev = subdev->device->dev; if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) return -ENOMEM; *_node = &node->base; nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory); node->base.memory.ptrs = &gk20a_instobj_ptrs; node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, &node->handle, GFP_KERNEL, imem->attrs); if (!node->base.vaddr) { nvkm_error(subdev, "cannot allocate DMA memory\n"); return -ENOMEM; } /* alignment check */ if (unlikely(node->handle & (align - 1))) nvkm_warn(subdev, "memory not aligned as requested: %pad (0x%x)\n", &node->handle, align); /* present memory for being mapped using small pages */ node->r.type = 12; node->r.offset = node->handle >> 12; node->r.length = (npages << PAGE_SHIFT) >> 12; node->base.mn = &node->r; return 0; } static int gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, struct gk20a_instobj **_node) { struct gk20a_instobj_iommu *node; struct nvkm_subdev *subdev = &imem->base.subdev; struct device *dev = subdev->device->dev; struct nvkm_mm_node *r; int ret; int i; /* * despite their variable size, instmem allocations are small enough * (< 1 page) to be handled by kzalloc */ if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) return -ENOMEM; *_node = &node->base; node->dma_addrs = (void *)(node->pages + npages); nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory); node->base.memory.ptrs = &gk20a_instobj_ptrs; /* Allocate backing memory */ for (i = 0; i < npages; i++) { struct page *p = alloc_page(GFP_KERNEL); dma_addr_t dma_adr; if (p == NULL) { ret = -ENOMEM; goto free_pages; } node->pages[i] = p; dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, dma_adr)) { nvkm_error(subdev, "DMA mapping error!\n"); ret = -ENOMEM; goto free_pages; } node->dma_addrs[i] = dma_adr; } mutex_lock(imem->mm_mutex); /* Reserve area from GPU address space */ ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, align >> imem->iommu_pgshift, &r); mutex_unlock(imem->mm_mutex); if (ret) { nvkm_error(subdev, "IOMMU space is full!\n"); goto free_pages; } /* Map into GPU address space */ for (i = 0; i < npages; i++) { u32 offset = (r->offset + i) << imem->iommu_pgshift; ret = iommu_map(imem->domain, offset, node->dma_addrs[i], PAGE_SIZE, IOMMU_READ | IOMMU_WRITE, GFP_KERNEL); if (ret < 0) { nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); while (i-- > 0) { offset -= PAGE_SIZE; iommu_unmap(imem->domain, offset, PAGE_SIZE); } goto release_area; } } /* IOMMU bit tells that an address is to be resolved through the IOMMU */ r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift); node->base.mn = r; return 0; release_area: mutex_lock(imem->mm_mutex); nvkm_mm_free(imem->mm, &r); mutex_unlock(imem->mm_mutex); free_pages: for (i = 0; i < npages && node->pages[i] != NULL; i++) { dma_addr_t dma_addr = node->dma_addrs[i]; if (dma_addr) dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(node->pages[i]); } return ret; } static int gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, struct nvkm_memory **pmemory) { struct gk20a_instmem *imem = gk20a_instmem(base); struct nvkm_subdev *subdev = &imem->base.subdev; struct gk20a_instobj *node = NULL; int ret; nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, imem->domain ? "IOMMU" : "DMA", size, align); /* Round size and align to page bounds */ size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); if (imem->domain) ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, align, &node); else ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, align, &node); *pmemory = node ? &node->memory : NULL; if (ret) return ret; node->imem = imem; nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n", size, align, (u64)node->mn->offset << 12); return 0; } static void * gk20a_instmem_dtor(struct nvkm_instmem *base) { struct gk20a_instmem *imem = gk20a_instmem(base); /* perform some sanity checks... */ if (!list_empty(&imem->vaddr_lru)) nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); if (imem->vaddr_use != 0) nvkm_warn(&base->subdev, "instobj vmap area not empty! " "0x%x bytes still mapped\n", imem->vaddr_use); return imem; } static const struct nvkm_instmem_func gk20a_instmem = { .dtor = gk20a_instmem_dtor, .memory_new = gk20a_instobj_new, .zero = false, }; int gk20a_instmem_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_instmem **pimem) { struct nvkm_device_tegra *tdev = device->func->tegra(device); struct gk20a_instmem *imem; if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) return -ENOMEM; nvkm_instmem_ctor(&gk20a_instmem, device, type, inst, &imem->base); mutex_init(&imem->lock); *pimem = &imem->base; /* do not allow more than 1MB of CPU-mapped instmem */ imem->vaddr_use = 0; imem->vaddr_max = 0x100000; INIT_LIST_HEAD(&imem->vaddr_lru); if (tdev->iommu.domain) { imem->mm_mutex = &tdev->iommu.mutex; imem->mm = &tdev->iommu.mm; imem->domain = tdev->iommu.domain; imem->iommu_pgshift = tdev->iommu.pgshift; imem->iommu_bit = tdev->func->iommu_bit; nvkm_info(&imem->base.subdev, "using IOMMU\n"); } else { imem->attrs = DMA_ATTR_WEAK_ORDERING | DMA_ATTR_WRITE_COMBINE; nvkm_info(&imem->base.subdev, "using DMA API\n"); } return 0; } |