Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation. */ #define pr_fmt(fmt) "powernv: " fmt #include <linux/kernel.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/device.h> #include <linux/gfp.h> #include <linux/smp.h> #include <linux/stop_machine.h> #include <asm/cputhreads.h> #include <asm/cpuidle.h> #include <asm/kvm_ppc.h> #include <asm/machdep.h> #include <asm/opal.h> #include <asm/smp.h> #include <trace/events/ipi.h> #include "subcore.h" #include "powernv.h" /* * Split/unsplit procedure: * * A core can be in one of three states, unsplit, 2-way split, and 4-way split. * * The mapping to subcores_per_core is simple: * * State | subcores_per_core * ------------|------------------ * Unsplit | 1 * 2-way split | 2 * 4-way split | 4 * * The core is split along thread boundaries, the mapping between subcores and * threads is as follows: * * Unsplit: * ---------------------------- * Subcore | 0 | * ---------------------------- * Thread | 0 1 2 3 4 5 6 7 | * ---------------------------- * * 2-way split: * ------------------------------------- * Subcore | 0 | 1 | * ------------------------------------- * Thread | 0 1 2 3 | 4 5 6 7 | * ------------------------------------- * * 4-way split: * ----------------------------------------- * Subcore | 0 | 1 | 2 | 3 | * ----------------------------------------- * Thread | 0 1 | 2 3 | 4 5 | 6 7 | * ----------------------------------------- * * * Transitions * ----------- * * It is not possible to transition between either of the split states, the * core must first be unsplit. The legal transitions are: * * ----------- --------------- * | | <----> | 2-way split | * | | --------------- * | Unsplit | * | | --------------- * | | <----> | 4-way split | * ----------- --------------- * * Unsplitting * ----------- * * Unsplitting is the simpler procedure. It requires thread 0 to request the * unsplit while all other threads NAP. * * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells * the hardware that if all threads except 0 are napping, the hardware should * unsplit the core. * * Non-zero threads are sent to a NAP loop, they don't exit the loop until they * see the core unsplit. * * Core 0 spins waiting for the hardware to see all the other threads napping * and perform the unsplit. * * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them * out of NAP. They will then see the core unsplit and exit the NAP loop. * * Splitting * --------- * * The basic splitting procedure is fairly straight forward. However it is * complicated by the fact that after the split occurs, the newly created * subcores are not in a fully initialised state. * * Most notably the subcores do not have the correct value for SDR1, which * means they must not be running in virtual mode when the split occurs. The * subcores have separate timebases SPRs but these are pre-synchronised by * opal. * * To begin with secondary threads are sent to an assembly routine. There they * switch to real mode, so they are immune to the uninitialised SDR1 value. * Once in real mode they indicate that they are in real mode, and spin waiting * to see the core split. * * Thread 0 waits to see that all secondaries are in real mode, and then begins * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which * prevents the hardware from unsplitting. Then it sets the appropriate HID bit * to request the split, and spins waiting to see that the split has happened. * * Concurrently the secondaries will notice the split. When they do they set up * their SPRs, notably SDR1, and then they can return to virtual mode and exit * the procedure. */ /* Initialised at boot by subcore_init() */ static int subcores_per_core; /* * Used to communicate to offline cpus that we want them to pop out of the * offline loop and do a split or unsplit. * * 0 - no split happening * 1 - unsplit in progress * 2 - split to 2 in progress * 4 - split to 4 in progress */ static int new_split_mode; static cpumask_var_t cpu_offline_mask; struct split_state { u8 step; u8 master; }; static DEFINE_PER_CPU(struct split_state, split_state); static void wait_for_sync_step(int step) { int i, cpu = smp_processor_id(); for (i = cpu + 1; i < cpu + threads_per_core; i++) while(per_cpu(split_state, i).step < step) barrier(); /* Order the wait loop vs any subsequent loads/stores. */ mb(); } static void update_hid_in_slw(u64 hid0) { u64 idle_states = pnv_get_supported_cpuidle_states(); if (idle_states & OPAL_PM_WINKLE_ENABLED) { /* OPAL call to patch slw with the new HID0 value */ u64 cpu_pir = hard_smp_processor_id(); opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0); } } static inline void update_power8_hid0(unsigned long hid0) { /* * The HID0 update on Power8 should at the very least be * preceded by a SYNC instruction followed by an ISYNC * instruction */ asm volatile("sync; mtspr %0,%1; isync":: "i"(SPRN_HID0), "r"(hid0)); } static void unsplit_core(void) { u64 hid0, mask; int i, cpu; mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; cpu = smp_processor_id(); if (cpu_thread_in_core(cpu) != 0) { while (mfspr(SPRN_HID0) & mask) power7_idle_type(PNV_THREAD_NAP); per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT; return; } hid0 = mfspr(SPRN_HID0); hid0 &= ~HID0_POWER8_DYNLPARDIS; update_power8_hid0(hid0); update_hid_in_slw(hid0); while (mfspr(SPRN_HID0) & mask) cpu_relax(); /* Wake secondaries out of NAP */ for (i = cpu + 1; i < cpu + threads_per_core; i++) smp_send_reschedule(i); wait_for_sync_step(SYNC_STEP_UNSPLIT); } static void split_core(int new_mode) { struct { u64 value; u64 mask; } split_parms[2] = { { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE }, { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE } }; int i, cpu; u64 hid0; /* Convert new_mode (2 or 4) into an index into our parms array */ i = (new_mode >> 1) - 1; BUG_ON(i < 0 || i > 1); cpu = smp_processor_id(); if (cpu_thread_in_core(cpu) != 0) { split_core_secondary_loop(&per_cpu(split_state, cpu).step); return; } wait_for_sync_step(SYNC_STEP_REAL_MODE); /* Write new mode */ hid0 = mfspr(SPRN_HID0); hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value; update_power8_hid0(hid0); update_hid_in_slw(hid0); /* Wait for it to happen */ while (!(mfspr(SPRN_HID0) & split_parms[i].mask)) cpu_relax(); } static void cpu_do_split(int new_mode) { /* * At boot subcores_per_core will be 0, so we will always unsplit at * boot. In the usual case where the core is already unsplit it's a * nop, and this just ensures the kernel's notion of the mode is * consistent with the hardware. */ if (subcores_per_core != 1) unsplit_core(); if (new_mode != 1) split_core(new_mode); mb(); per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED; } bool cpu_core_split_required(void) { smp_rmb(); if (!new_split_mode) return false; cpu_do_split(new_split_mode); return true; } void update_subcore_sibling_mask(void) { int cpu; /* * sibling mask for the first cpu. Left shift this by required bits * to get sibling mask for the rest of the cpus. */ int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1; for_each_possible_cpu(cpu) { int tid = cpu_thread_in_core(cpu); int offset = (tid / threads_per_subcore) * threads_per_subcore; int mask = sibling_mask_first_cpu << offset; paca_ptrs[cpu]->subcore_sibling_mask = mask; } } static int cpu_update_split_mode(void *data) { int cpu, new_mode = *(int *)data; if (this_cpu_ptr(&split_state)->master) { new_split_mode = new_mode; smp_wmb(); cpumask_andnot(cpu_offline_mask, cpu_present_mask, cpu_online_mask); /* This should work even though the cpu is offline */ for_each_cpu(cpu, cpu_offline_mask) smp_send_reschedule(cpu); } cpu_do_split(new_mode); if (this_cpu_ptr(&split_state)->master) { /* Wait for all cpus to finish before we touch subcores_per_core */ for_each_present_cpu(cpu) { if (cpu >= setup_max_cpus) break; while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED) barrier(); } new_split_mode = 0; /* Make the new mode public */ subcores_per_core = new_mode; threads_per_subcore = threads_per_core / subcores_per_core; update_subcore_sibling_mask(); /* Make sure the new mode is written before we exit */ mb(); } return 0; } static int set_subcores_per_core(int new_mode) { struct split_state *state; int cpu; if (kvm_hv_mode_active()) { pr_err("Unable to change split core mode while KVM active.\n"); return -EBUSY; } /* * We are only called at boot, or from the sysfs write. If that ever * changes we'll need a lock here. */ BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3); for_each_present_cpu(cpu) { state = &per_cpu(split_state, cpu); state->step = SYNC_STEP_INITIAL; state->master = 0; } cpus_read_lock(); /* This cpu will update the globals before exiting stop machine */ this_cpu_ptr(&split_state)->master = 1; /* Ensure state is consistent before we call the other cpus */ mb(); stop_machine_cpuslocked(cpu_update_split_mode, &new_mode, cpu_online_mask); cpus_read_unlock(); return 0; } static ssize_t __used store_subcores_per_core(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int rc; /* We are serialised by the attribute lock */ rc = sscanf(buf, "%lx", &val); if (rc != 1) return -EINVAL; switch (val) { case 1: case 2: case 4: if (subcores_per_core == val) /* Nothing to do */ goto out; break; default: return -EINVAL; } rc = set_subcores_per_core(val); if (rc) return rc; out: return count; } static ssize_t show_subcores_per_core(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%x\n", subcores_per_core); } static DEVICE_ATTR(subcores_per_core, 0644, show_subcores_per_core, store_subcores_per_core); static int subcore_init(void) { struct device *dev_root; unsigned pvr_ver; int rc = 0; pvr_ver = PVR_VER(mfspr(SPRN_PVR)); if (pvr_ver != PVR_POWER8 && pvr_ver != PVR_POWER8E && pvr_ver != PVR_POWER8NVL) return 0; /* * We need all threads in a core to be present to split/unsplit so * continue only if max_cpus are aligned to threads_per_core. */ if (setup_max_cpus % threads_per_core) return 0; BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL)); set_subcores_per_core(1); dev_root = bus_get_dev_root(&cpu_subsys); if (dev_root) { rc = device_create_file(dev_root, &dev_attr_subcores_per_core); put_device(dev_root); } return rc; } machine_device_initcall(powernv, subcore_init); |