Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016 HGST, a Western Digital Company. */ #include <linux/memremap.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/pci-p2pdma.h> #include <rdma/mr_pool.h> #include <rdma/rw.h> enum { RDMA_RW_SINGLE_WR, RDMA_RW_MULTI_WR, RDMA_RW_MR, RDMA_RW_SIG_MR, }; static bool rdma_rw_force_mr; module_param_named(force_mr, rdma_rw_force_mr, bool, 0); MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); /* * Report whether memory registration should be used. Memory registration must * be used for iWarp devices because of iWARP-specific limitations. Memory * registration is also enabled if registering memory might yield better * performance than using multiple SGE entries, see rdma_rw_io_needs_mr() */ static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num) { if (rdma_protocol_iwarp(dev, port_num)) return true; if (dev->attrs.max_sgl_rd) return true; if (unlikely(rdma_rw_force_mr)) return true; return false; } /* * Check if the device will use memory registration for this RW operation. * For RDMA READs we must use MRs on iWarp and can optionally use them as an * optimization otherwise. Additionally we have a debug option to force usage * of MRs to help testing this code path. */ static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num, enum dma_data_direction dir, int dma_nents) { if (dir == DMA_FROM_DEVICE) { if (rdma_protocol_iwarp(dev, port_num)) return true; if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd) return true; } if (unlikely(rdma_rw_force_mr)) return true; return false; } static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev, bool pi_support) { u32 max_pages; if (pi_support) max_pages = dev->attrs.max_pi_fast_reg_page_list_len; else max_pages = dev->attrs.max_fast_reg_page_list_len; /* arbitrary limit to avoid allocating gigantic resources */ return min_t(u32, max_pages, 256); } static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg) { int count = 0; if (reg->mr->need_inval) { reg->inv_wr.opcode = IB_WR_LOCAL_INV; reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; reg->inv_wr.next = ®->reg_wr.wr; count++; } else { reg->inv_wr.next = NULL; } return count; } /* Caller must have zero-initialized *reg. */ static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num, struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, u32 sg_cnt, u32 offset) { u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, qp->integrity_en); u32 nents = min(sg_cnt, pages_per_mr); int count = 0, ret; reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); if (!reg->mr) return -EAGAIN; count += rdma_rw_inv_key(reg); ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); if (ret < 0 || ret < nents) { ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); return -EINVAL; } reg->reg_wr.wr.opcode = IB_WR_REG_MR; reg->reg_wr.mr = reg->mr; reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; if (rdma_protocol_iwarp(qp->device, port_num)) reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; count++; reg->sge.addr = reg->mr->iova; reg->sge.length = reg->mr->length; return count; } static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct rdma_rw_reg_ctx *prev = NULL; u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, qp->integrity_en); int i, j, ret = 0, count = 0; ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr); ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); if (!ctx->reg) { ret = -ENOMEM; goto out; } for (i = 0; i < ctx->nr_ops; i++) { struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; u32 nents = min(sg_cnt, pages_per_mr); ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, offset); if (ret < 0) goto out_free; count += ret; if (prev) { if (reg->mr->need_inval) prev->wr.wr.next = ®->inv_wr; else prev->wr.wr.next = ®->reg_wr.wr; } reg->reg_wr.wr.next = ®->wr.wr; reg->wr.wr.sg_list = ®->sge; reg->wr.wr.num_sge = 1; reg->wr.remote_addr = remote_addr; reg->wr.rkey = rkey; if (dir == DMA_TO_DEVICE) { reg->wr.wr.opcode = IB_WR_RDMA_WRITE; } else if (!rdma_cap_read_inv(qp->device, port_num)) { reg->wr.wr.opcode = IB_WR_RDMA_READ; } else { reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; } count++; remote_addr += reg->sge.length; sg_cnt -= nents; for (j = 0; j < nents; j++) sg = sg_next(sg); prev = reg; offset = 0; } if (prev) prev->wr.wr.next = NULL; ctx->type = RDMA_RW_MR; return count; out_free: while (--i >= 0) ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); kfree(ctx->reg); out: return ret; } static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, struct scatterlist *sg, u32 sg_cnt, u32 offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : qp->max_read_sge; struct ib_sge *sge; u32 total_len = 0, i, j; ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); if (!ctx->map.sges) goto out; ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); if (!ctx->map.wrs) goto out_free_sges; for (i = 0; i < ctx->nr_ops; i++) { struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; u32 nr_sge = min(sg_cnt, max_sge); if (dir == DMA_TO_DEVICE) rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; else rdma_wr->wr.opcode = IB_WR_RDMA_READ; rdma_wr->remote_addr = remote_addr + total_len; rdma_wr->rkey = rkey; rdma_wr->wr.num_sge = nr_sge; rdma_wr->wr.sg_list = sge; for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { sge->addr = sg_dma_address(sg) + offset; sge->length = sg_dma_len(sg) - offset; sge->lkey = qp->pd->local_dma_lkey; total_len += sge->length; sge++; sg_cnt--; offset = 0; } rdma_wr->wr.next = i + 1 < ctx->nr_ops ? &ctx->map.wrs[i + 1].wr : NULL; } ctx->type = RDMA_RW_MULTI_WR; return ctx->nr_ops; out_free_sges: kfree(ctx->map.sges); out: return -ENOMEM; } static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct ib_rdma_wr *rdma_wr = &ctx->single.wr; ctx->nr_ops = 1; ctx->single.sge.lkey = qp->pd->local_dma_lkey; ctx->single.sge.addr = sg_dma_address(sg) + offset; ctx->single.sge.length = sg_dma_len(sg) - offset; memset(rdma_wr, 0, sizeof(*rdma_wr)); if (dir == DMA_TO_DEVICE) rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; else rdma_wr->wr.opcode = IB_WR_RDMA_READ; rdma_wr->wr.sg_list = &ctx->single.sge; rdma_wr->wr.num_sge = 1; rdma_wr->remote_addr = remote_addr; rdma_wr->rkey = rkey; ctx->type = RDMA_RW_SINGLE_WR; return 1; } /** * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context * @ctx: context to initialize * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist to READ/WRITE from/to * @sg_cnt: number of entries in @sg * @sg_offset: current byte offset into @sg * @remote_addr:remote address to read/write (relative to @rkey) * @rkey: remote key to operate on * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ * * Returns the number of WQEs that will be needed on the workqueue if * successful, or a negative error code. */ int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct ib_device *dev = qp->pd->device; struct sg_table sgt = { .sgl = sg, .orig_nents = sg_cnt, }; int ret; ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0); if (ret) return ret; sg_cnt = sgt.nents; /* * Skip to the S/G entry that sg_offset falls into: */ for (;;) { u32 len = sg_dma_len(sg); if (sg_offset < len) break; sg = sg_next(sg); sg_offset -= len; sg_cnt--; } ret = -EIO; if (WARN_ON_ONCE(sg_cnt == 0)) goto out_unmap_sg; if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, sg_offset, remote_addr, rkey, dir); } else if (sg_cnt > 1) { ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, remote_addr, rkey, dir); } else { ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, remote_addr, rkey, dir); } if (ret < 0) goto out_unmap_sg; return ret; out_unmap_sg: ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0); return ret; } EXPORT_SYMBOL(rdma_rw_ctx_init); /** * rdma_rw_ctx_signature_init - initialize a RW context with signature offload * @ctx: context to initialize * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist to READ/WRITE from/to * @sg_cnt: number of entries in @sg * @prot_sg: scatterlist to READ/WRITE protection information from/to * @prot_sg_cnt: number of entries in @prot_sg * @sig_attrs: signature offloading algorithms * @remote_addr:remote address to read/write (relative to @rkey) * @rkey: remote key to operate on * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ * * Returns the number of WQEs that will be needed on the workqueue if * successful, or a negative error code. */ int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, struct scatterlist *prot_sg, u32 prot_sg_cnt, struct ib_sig_attrs *sig_attrs, u64 remote_addr, u32 rkey, enum dma_data_direction dir) { struct ib_device *dev = qp->pd->device; u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, qp->integrity_en); struct sg_table sgt = { .sgl = sg, .orig_nents = sg_cnt, }; struct sg_table prot_sgt = { .sgl = prot_sg, .orig_nents = prot_sg_cnt, }; struct ib_rdma_wr *rdma_wr; int count = 0, ret; if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n", sg_cnt, prot_sg_cnt, pages_per_mr); return -EINVAL; } ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0); if (ret) return ret; if (prot_sg_cnt) { ret = ib_dma_map_sgtable_attrs(dev, &prot_sgt, dir, 0); if (ret) goto out_unmap_sg; } ctx->type = RDMA_RW_SIG_MR; ctx->nr_ops = 1; ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL); if (!ctx->reg) { ret = -ENOMEM; goto out_unmap_prot_sg; } ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs); if (!ctx->reg->mr) { ret = -EAGAIN; goto out_free_ctx; } count += rdma_rw_inv_key(ctx->reg); memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs)); ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg, prot_sgt.nents, NULL, SZ_4K); if (unlikely(ret)) { pr_err("failed to map PI sg (%u)\n", sgt.nents + prot_sgt.nents); goto out_destroy_sig_mr; } ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY; ctx->reg->reg_wr.wr.wr_cqe = NULL; ctx->reg->reg_wr.wr.num_sge = 0; ctx->reg->reg_wr.wr.send_flags = 0; ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; if (rdma_protocol_iwarp(qp->device, port_num)) ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; ctx->reg->reg_wr.mr = ctx->reg->mr; ctx->reg->reg_wr.key = ctx->reg->mr->lkey; count++; ctx->reg->sge.addr = ctx->reg->mr->iova; ctx->reg->sge.length = ctx->reg->mr->length; if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE) ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length; rdma_wr = &ctx->reg->wr; rdma_wr->wr.sg_list = &ctx->reg->sge; rdma_wr->wr.num_sge = 1; rdma_wr->remote_addr = remote_addr; rdma_wr->rkey = rkey; if (dir == DMA_TO_DEVICE) rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; else rdma_wr->wr.opcode = IB_WR_RDMA_READ; ctx->reg->reg_wr.wr.next = &rdma_wr->wr; count++; return count; out_destroy_sig_mr: ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); out_free_ctx: kfree(ctx->reg); out_unmap_prot_sg: if (prot_sgt.nents) ib_dma_unmap_sgtable_attrs(dev, &prot_sgt, dir, 0); out_unmap_sg: ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0); return ret; } EXPORT_SYMBOL(rdma_rw_ctx_signature_init); /* * Now that we are going to post the WRs we can update the lkey and need_inval * state on the MRs. If we were doing this at init time, we would get double * or missing invalidations if a context was initialized but not actually * posted. */ static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) { reg->mr->need_inval = need_inval; ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); reg->reg_wr.key = reg->mr->lkey; reg->sge.lkey = reg->mr->lkey; } /** * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation * @ctx: context to operate on * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @cqe: completion queue entry for the last WR * @chain_wr: WR to append to the posted chain * * Return the WR chain for the set of RDMA READ/WRITE operations described by * @ctx, as well as any memory registration operations needed. If @chain_wr * is non-NULL the WR it points to will be appended to the chain of WRs posted. * If @chain_wr is not set @cqe must be set so that the caller gets a * completion notification. */ struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) { struct ib_send_wr *first_wr, *last_wr; int i; switch (ctx->type) { case RDMA_RW_SIG_MR: case RDMA_RW_MR: for (i = 0; i < ctx->nr_ops; i++) { rdma_rw_update_lkey(&ctx->reg[i], ctx->reg[i].wr.wr.opcode != IB_WR_RDMA_READ_WITH_INV); } if (ctx->reg[0].inv_wr.next) first_wr = &ctx->reg[0].inv_wr; else first_wr = &ctx->reg[0].reg_wr.wr; last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; break; case RDMA_RW_MULTI_WR: first_wr = &ctx->map.wrs[0].wr; last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; break; case RDMA_RW_SINGLE_WR: first_wr = &ctx->single.wr.wr; last_wr = &ctx->single.wr.wr; break; default: BUG(); } if (chain_wr) { last_wr->next = chain_wr; } else { last_wr->wr_cqe = cqe; last_wr->send_flags |= IB_SEND_SIGNALED; } return first_wr; } EXPORT_SYMBOL(rdma_rw_ctx_wrs); /** * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation * @ctx: context to operate on * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @cqe: completion queue entry for the last WR * @chain_wr: WR to append to the posted chain * * Post the set of RDMA READ/WRITE operations described by @ctx, as well as * any memory registration operations needed. If @chain_wr is non-NULL the * WR it points to will be appended to the chain of WRs posted. If @chain_wr * is not set @cqe must be set so that the caller gets a completion * notification. */ int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) { struct ib_send_wr *first_wr; first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); return ib_post_send(qp, first_wr, NULL); } EXPORT_SYMBOL(rdma_rw_ctx_post); /** * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init * @ctx: context to release * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist that was used for the READ/WRITE * @sg_cnt: number of entries in @sg * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ */ void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) { int i; switch (ctx->type) { case RDMA_RW_MR: for (i = 0; i < ctx->nr_ops; i++) ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); kfree(ctx->reg); break; case RDMA_RW_MULTI_WR: kfree(ctx->map.wrs); kfree(ctx->map.sges); break; case RDMA_RW_SINGLE_WR: break; default: BUG(); break; } ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); } EXPORT_SYMBOL(rdma_rw_ctx_destroy); /** * rdma_rw_ctx_destroy_signature - release all resources allocated by * rdma_rw_ctx_signature_init * @ctx: context to release * @qp: queue pair to operate on * @port_num: port num to which the connection is bound * @sg: scatterlist that was used for the READ/WRITE * @sg_cnt: number of entries in @sg * @prot_sg: scatterlist that was used for the READ/WRITE of the PI * @prot_sg_cnt: number of entries in @prot_sg * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ */ void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, struct scatterlist *sg, u32 sg_cnt, struct scatterlist *prot_sg, u32 prot_sg_cnt, enum dma_data_direction dir) { if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) return; ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); kfree(ctx->reg); if (prot_sg_cnt) ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); } EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); /** * rdma_rw_mr_factor - return number of MRs required for a payload * @device: device handling the connection * @port_num: port num to which the connection is bound * @maxpages: maximum payload pages per rdma_rw_ctx * * Returns the number of MRs the device requires to move @maxpayload * bytes. The returned value is used during transport creation to * compute max_rdma_ctxts and the size of the transport's Send and * Send Completion Queues. */ unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num, unsigned int maxpages) { unsigned int mr_pages; if (rdma_rw_can_use_mr(device, port_num)) mr_pages = rdma_rw_fr_page_list_len(device, false); else mr_pages = device->attrs.max_sge_rd; return DIV_ROUND_UP(maxpages, mr_pages); } EXPORT_SYMBOL(rdma_rw_mr_factor); void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) { u32 factor; WARN_ON_ONCE(attr->port_num == 0); /* * Each context needs at least one RDMA READ or WRITE WR. * * For some hardware we might need more, eventually we should ask the * HCA driver for a multiplier here. */ factor = 1; /* * If the devices needs MRs to perform RDMA READ or WRITE operations, * we'll need two additional MRs for the registrations and the * invalidation. */ if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN || rdma_rw_can_use_mr(dev, attr->port_num)) factor += 2; /* inv + reg */ attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; /* * But maybe we were just too high in the sky and the device doesn't * even support all we need, and we'll have to live with what we get.. */ attr->cap.max_send_wr = min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); } int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) { struct ib_device *dev = qp->pd->device; u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0; int ret = 0; if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) { nr_sig_mrs = attr->cap.max_rdma_ctxs; nr_mrs = attr->cap.max_rdma_ctxs; max_num_sg = rdma_rw_fr_page_list_len(dev, true); } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { nr_mrs = attr->cap.max_rdma_ctxs; max_num_sg = rdma_rw_fr_page_list_len(dev, false); } if (nr_mrs) { ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, IB_MR_TYPE_MEM_REG, max_num_sg, 0); if (ret) { pr_err("%s: failed to allocated %u MRs\n", __func__, nr_mrs); return ret; } } if (nr_sig_mrs) { ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg); if (ret) { pr_err("%s: failed to allocated %u SIG MRs\n", __func__, nr_sig_mrs); goto out_free_rdma_mrs; } } return 0; out_free_rdma_mrs: ib_mr_pool_destroy(qp, &qp->rdma_mrs); return ret; } void rdma_rw_cleanup_mrs(struct ib_qp *qp) { ib_mr_pool_destroy(qp, &qp->sig_mrs); ib_mr_pool_destroy(qp, &qp->rdma_mrs); } |