Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Robert Jarzmik <robert.jarzmik@free.fr> * * Scatterlist splitting helpers. */ #include <linux/scatterlist.h> #include <linux/slab.h> struct sg_splitter { struct scatterlist *in_sg0; int nents; off_t skip_sg0; unsigned int length_last_sg; struct scatterlist *out_sg; }; static int sg_calculate_split(struct scatterlist *in, int nents, int nb_splits, off_t skip, const size_t *sizes, struct sg_splitter *splitters, bool mapped) { int i; unsigned int sglen; size_t size = sizes[0], len; struct sg_splitter *curr = splitters; struct scatterlist *sg; for (i = 0; i < nb_splits; i++) { splitters[i].in_sg0 = NULL; splitters[i].nents = 0; } for_each_sg(in, sg, nents, i) { sglen = mapped ? sg_dma_len(sg) : sg->length; if (skip > sglen) { skip -= sglen; continue; } len = min_t(size_t, size, sglen - skip); if (!curr->in_sg0) { curr->in_sg0 = sg; curr->skip_sg0 = skip; } size -= len; curr->nents++; curr->length_last_sg = len; while (!size && (skip + len < sglen) && (--nb_splits > 0)) { curr++; size = *(++sizes); skip += len; len = min_t(size_t, size, sglen - skip); curr->in_sg0 = sg; curr->skip_sg0 = skip; curr->nents = 1; curr->length_last_sg = len; size -= len; } skip = 0; if (!size && --nb_splits > 0) { curr++; size = *(++sizes); } if (!nb_splits) break; } return (size || !splitters[0].in_sg0) ? -EINVAL : 0; } static void sg_split_phys(struct sg_splitter *splitters, const int nb_splits) { int i, j; struct scatterlist *in_sg, *out_sg; struct sg_splitter *split; for (i = 0, split = splitters; i < nb_splits; i++, split++) { in_sg = split->in_sg0; out_sg = split->out_sg; for (j = 0; j < split->nents; j++, out_sg++) { *out_sg = *in_sg; if (!j) { out_sg->offset += split->skip_sg0; out_sg->length -= split->skip_sg0; } else { out_sg->offset = 0; } sg_dma_address(out_sg) = 0; sg_dma_len(out_sg) = 0; in_sg = sg_next(in_sg); } out_sg[-1].length = split->length_last_sg; sg_mark_end(out_sg - 1); } } static void sg_split_mapped(struct sg_splitter *splitters, const int nb_splits) { int i, j; struct scatterlist *in_sg, *out_sg; struct sg_splitter *split; for (i = 0, split = splitters; i < nb_splits; i++, split++) { in_sg = split->in_sg0; out_sg = split->out_sg; for (j = 0; j < split->nents; j++, out_sg++) { sg_dma_address(out_sg) = sg_dma_address(in_sg); sg_dma_len(out_sg) = sg_dma_len(in_sg); if (!j) { sg_dma_address(out_sg) += split->skip_sg0; sg_dma_len(out_sg) -= split->skip_sg0; } in_sg = sg_next(in_sg); } sg_dma_len(--out_sg) = split->length_last_sg; } } /** * sg_split - split a scatterlist into several scatterlists * @in: the input sg list * @in_mapped_nents: the result of a dma_map_sg(in, ...), or 0 if not mapped. * @skip: the number of bytes to skip in the input sg list * @nb_splits: the number of desired sg outputs * @split_sizes: the respective size of each output sg list in bytes * @out: an array where to store the allocated output sg lists * @out_mapped_nents: the resulting sg lists mapped number of sg entries. Might * be NULL if sglist not already mapped (in_mapped_nents = 0) * @gfp_mask: the allocation flag * * This function splits the input sg list into nb_splits sg lists, which are * allocated and stored into out. * The @in is split into : * - @out[0], which covers bytes [@skip .. @skip + @split_sizes[0] - 1] of @in * - @out[1], which covers bytes [@skip + split_sizes[0] .. * @skip + @split_sizes[0] + @split_sizes[1] -1] * etc ... * It will be the caller's duty to kfree() out array members. * * Returns 0 upon success, or error code */ int sg_split(struct scatterlist *in, const int in_mapped_nents, const off_t skip, const int nb_splits, const size_t *split_sizes, struct scatterlist **out, int *out_mapped_nents, gfp_t gfp_mask) { int i, ret; struct sg_splitter *splitters; splitters = kcalloc(nb_splits, sizeof(*splitters), gfp_mask); if (!splitters) return -ENOMEM; ret = sg_calculate_split(in, sg_nents(in), nb_splits, skip, split_sizes, splitters, false); if (ret < 0) goto err; ret = -ENOMEM; for (i = 0; i < nb_splits; i++) { splitters[i].out_sg = kmalloc_array(splitters[i].nents, sizeof(struct scatterlist), gfp_mask); if (!splitters[i].out_sg) goto err; } /* * The order of these 3 calls is important and should be kept. */ sg_split_phys(splitters, nb_splits); if (in_mapped_nents) { ret = sg_calculate_split(in, in_mapped_nents, nb_splits, skip, split_sizes, splitters, true); if (ret < 0) goto err; sg_split_mapped(splitters, nb_splits); } for (i = 0; i < nb_splits; i++) { out[i] = splitters[i].out_sg; if (out_mapped_nents) out_mapped_nents[i] = splitters[i].nents; } kfree(splitters); return 0; err: for (i = 0; i < nb_splits; i++) kfree(splitters[i].out_sg); kfree(splitters); return ret; } EXPORT_SYMBOL(sg_split); |