Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 | // SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation */ #include <linux/cache.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/threads.h> #include <linux/export.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/sched/mm.h> #include <linux/cpumask.h> #include <linux/cpu.h> #include <linux/err.h> #include <linux/ftrace.h> #include <linux/irqdomain.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/atomic.h> #include <asm/cpu.h> #include <asm/ginvt.h> #include <asm/processor.h> #include <asm/idle.h> #include <asm/r4k-timer.h> #include <asm/mips-cps.h> #include <asm/mmu_context.h> #include <asm/time.h> #include <asm/setup.h> #include <asm/maar.h> int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ EXPORT_SYMBOL(__cpu_number_map); int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ EXPORT_SYMBOL(__cpu_logical_map); /* Number of TCs (or siblings in Intel speak) per CPU core */ int smp_num_siblings = 1; EXPORT_SYMBOL(smp_num_siblings); /* representing the TCs (or siblings in Intel speak) of each logical CPU */ cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_sibling_map); /* representing the core map of multi-core chips of each logical CPU */ cpumask_t cpu_core_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_core_map); static DECLARE_COMPLETION(cpu_starting); static DECLARE_COMPLETION(cpu_running); /* * A logical cpu mask containing only one VPE per core to * reduce the number of IPIs on large MT systems. */ cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_foreign_map); /* representing cpus for which sibling maps can be computed */ static cpumask_t cpu_sibling_setup_map; /* representing cpus for which core maps can be computed */ static cpumask_t cpu_core_setup_map; cpumask_t cpu_coherent_mask; unsigned int smp_max_threads __initdata = UINT_MAX; static int __init early_nosmt(char *s) { smp_max_threads = 1; return 0; } early_param("nosmt", early_nosmt); static int __init early_smt(char *s) { get_option(&s, &smp_max_threads); /* Ensure at least one thread is available */ smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX); return 0; } early_param("smt", early_smt); #ifdef CONFIG_GENERIC_IRQ_IPI static struct irq_desc *call_desc; static struct irq_desc *sched_desc; #endif static inline void set_cpu_sibling_map(int cpu) { int i; cpumask_set_cpu(cpu, &cpu_sibling_setup_map); if (smp_num_siblings > 1) { for_each_cpu(i, &cpu_sibling_setup_map) { if (cpus_are_siblings(cpu, i)) { cpumask_set_cpu(i, &cpu_sibling_map[cpu]); cpumask_set_cpu(cpu, &cpu_sibling_map[i]); } } } else cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); } static inline void set_cpu_core_map(int cpu) { int i; cpumask_set_cpu(cpu, &cpu_core_setup_map); for_each_cpu(i, &cpu_core_setup_map) { if (cpu_data[cpu].package == cpu_data[i].package) { cpumask_set_cpu(i, &cpu_core_map[cpu]); cpumask_set_cpu(cpu, &cpu_core_map[i]); } } } /* * Calculate a new cpu_foreign_map mask whenever a * new cpu appears or disappears. */ void calculate_cpu_foreign_map(void) { int i, k, core_present; cpumask_t temp_foreign_map; /* Re-calculate the mask */ cpumask_clear(&temp_foreign_map); for_each_online_cpu(i) { core_present = 0; for_each_cpu(k, &temp_foreign_map) if (cpus_are_siblings(i, k)) core_present = 1; if (!core_present) cpumask_set_cpu(i, &temp_foreign_map); } for_each_online_cpu(i) cpumask_andnot(&cpu_foreign_map[i], &temp_foreign_map, &cpu_sibling_map[i]); } const struct plat_smp_ops *mp_ops; EXPORT_SYMBOL(mp_ops); void register_smp_ops(const struct plat_smp_ops *ops) { if (mp_ops) printk(KERN_WARNING "Overriding previously set SMP ops\n"); mp_ops = ops; } #ifdef CONFIG_GENERIC_IRQ_IPI void mips_smp_send_ipi_single(int cpu, unsigned int action) { mips_smp_send_ipi_mask(cpumask_of(cpu), action); } void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned long flags; unsigned int core; int cpu; local_irq_save(flags); switch (action) { case SMP_CALL_FUNCTION: __ipi_send_mask(call_desc, mask); break; case SMP_RESCHEDULE_YOURSELF: __ipi_send_mask(sched_desc, mask); break; default: BUG(); } if (mips_cpc_present()) { for_each_cpu(cpu, mask) { if (cpus_are_siblings(cpu, smp_processor_id())) continue; core = cpu_core(&cpu_data[cpu]); while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); mips_cpc_lock_other(core); write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); mips_cpc_unlock_other(); mips_cm_unlock_other(); } } } local_irq_restore(flags); } static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) { scheduler_ipi(); return IRQ_HANDLED; } static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) { generic_smp_call_function_interrupt(); return IRQ_HANDLED; } static void smp_ipi_init_one(unsigned int virq, const char *name, irq_handler_t handler) { int ret; irq_set_handler(virq, handle_percpu_irq); ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL); BUG_ON(ret); } static unsigned int call_virq, sched_virq; int mips_smp_ipi_allocate(const struct cpumask *mask) { int virq; struct irq_domain *ipidomain; struct device_node *node; node = of_irq_find_parent(of_root); ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); /* * Some platforms have half DT setup. So if we found irq node but * didn't find an ipidomain, try to search for one that is not in the * DT. */ if (node && !ipidomain) ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); /* * There are systems which use IPI IRQ domains, but only have one * registered when some runtime condition is met. For example a Malta * kernel may include support for GIC & CPU interrupt controller IPI * IRQ domains, but if run on a system with no GIC & no MT ASE then * neither will be supported or registered. * * We only have a problem if we're actually using multiple CPUs so fail * loudly if that is the case. Otherwise simply return, skipping IPI * setup, if we're running with only a single CPU. */ if (!ipidomain) { BUG_ON(num_present_cpus() > 1); return 0; } virq = irq_reserve_ipi(ipidomain, mask); BUG_ON(!virq); if (!call_virq) call_virq = virq; virq = irq_reserve_ipi(ipidomain, mask); BUG_ON(!virq); if (!sched_virq) sched_virq = virq; if (irq_domain_is_ipi_per_cpu(ipidomain)) { int cpu; for_each_cpu(cpu, mask) { smp_ipi_init_one(call_virq + cpu, "IPI call", ipi_call_interrupt); smp_ipi_init_one(sched_virq + cpu, "IPI resched", ipi_resched_interrupt); } } else { smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt); smp_ipi_init_one(sched_virq, "IPI resched", ipi_resched_interrupt); } return 0; } int mips_smp_ipi_free(const struct cpumask *mask) { struct irq_domain *ipidomain; struct device_node *node; node = of_irq_find_parent(of_root); ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); /* * Some platforms have half DT setup. So if we found irq node but * didn't find an ipidomain, try to search for one that is not in the * DT. */ if (node && !ipidomain) ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); BUG_ON(!ipidomain); if (irq_domain_is_ipi_per_cpu(ipidomain)) { int cpu; for_each_cpu(cpu, mask) { free_irq(call_virq + cpu, NULL); free_irq(sched_virq + cpu, NULL); } } irq_destroy_ipi(call_virq, mask); irq_destroy_ipi(sched_virq, mask); return 0; } static int __init mips_smp_ipi_init(void) { if (num_possible_cpus() == 1) return 0; mips_smp_ipi_allocate(cpu_possible_mask); call_desc = irq_to_desc(call_virq); sched_desc = irq_to_desc(sched_virq); return 0; } early_initcall(mips_smp_ipi_init); #endif /* * First C code run on the secondary CPUs after being started up by * the master. */ asmlinkage void start_secondary(void) { unsigned int cpu; cpu_probe(); per_cpu_trap_init(false); mips_clockevent_init(); mp_ops->init_secondary(); cpu_report(); maar_init(); /* * XXX parity protection should be folded in here when it's converted * to an option instead of something based on .cputype */ calibrate_delay(); cpu = smp_processor_id(); cpu_data[cpu].udelay_val = loops_per_jiffy; set_cpu_sibling_map(cpu); set_cpu_core_map(cpu); cpumask_set_cpu(cpu, &cpu_coherent_mask); notify_cpu_starting(cpu); /* Notify boot CPU that we're starting & ready to sync counters */ complete(&cpu_starting); synchronise_count_slave(cpu); /* The CPU is running and counters synchronised, now mark it online */ set_cpu_online(cpu, true); calculate_cpu_foreign_map(); /* * Notify boot CPU that we're up & online and it can safely return * from __cpu_up */ complete(&cpu_running); /* * irq will be enabled in ->smp_finish(), enabling it too early * is dangerous. */ WARN_ON_ONCE(!irqs_disabled()); mp_ops->smp_finish(); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); } static void stop_this_cpu(void *dummy) { /* * Remove this CPU: */ set_cpu_online(smp_processor_id(), false); calculate_cpu_foreign_map(); local_irq_disable(); while (1); } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 0); } void __init smp_cpus_done(unsigned int max_cpus) { } /* called from main before smp_init() */ void __init smp_prepare_cpus(unsigned int max_cpus) { init_new_context(current, &init_mm); current_thread_info()->cpu = 0; mp_ops->prepare_cpus(max_cpus); set_cpu_sibling_map(0); set_cpu_core_map(0); calculate_cpu_foreign_map(); #ifndef CONFIG_HOTPLUG_CPU init_cpu_present(cpu_possible_mask); #endif cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); } /* preload SMP state for boot cpu */ void smp_prepare_boot_cpu(void) { if (mp_ops->prepare_boot_cpu) mp_ops->prepare_boot_cpu(); set_cpu_possible(0, true); set_cpu_online(0, true); } int __cpu_up(unsigned int cpu, struct task_struct *tidle) { int err; err = mp_ops->boot_secondary(cpu, tidle); if (err) return err; /* Wait for CPU to start and be ready to sync counters */ if (!wait_for_completion_timeout(&cpu_starting, msecs_to_jiffies(1000))) { pr_crit("CPU%u: failed to start\n", cpu); return -EIO; } synchronise_count_master(cpu); /* Wait for CPU to finish startup & mark itself online before return */ wait_for_completion(&cpu_running); return 0; } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { if (cpu_has_mmid) { htw_stop(); ginvt_full(); sync_ginv(); instruction_hazard(); htw_start(); return; } on_each_cpu(flush_tlb_all_ipi, NULL, 1); } static void flush_tlb_mm_ipi(void *mm) { drop_mmu_context((struct mm_struct *)mm); } /* * Special Variant of smp_call_function for use by TLB functions: * * o No return value * o collapses to normal function call on UP kernels * o collapses to normal function call on systems with a single shared * primary cache. */ static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) { smp_call_function(func, info, 1); } static inline void smp_on_each_tlb(void (*func) (void *info), void *info) { preempt_disable(); smp_on_other_tlbs(func, info); func(info); preempt_enable(); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, inter-CPU interrupts have to be sent. * Another case where inter-CPU interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { if (!mm) return; if (atomic_read(&mm->mm_users) == 0) return; /* happens as a result of exit_mmap() */ preempt_disable(); if (cpu_has_mmid) { /* * No need to worry about other CPUs - the ginvt in * drop_mmu_context() will be globalized. */ } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_on_other_tlbs(flush_tlb_mm_ipi, mm); } else { unsigned int cpu; for_each_online_cpu(cpu) { if (cpu != smp_processor_id() && cpu_context(cpu, mm)) set_cpu_context(cpu, mm, 0); } } drop_mmu_context(mm); preempt_enable(); } struct flush_tlb_data { struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; unsigned long addr; u32 old_mmid; preempt_disable(); if (cpu_has_mmid) { htw_stop(); old_mmid = read_c0_memorymapid(); write_c0_memorymapid(cpu_asid(0, mm)); mtc0_tlbw_hazard(); addr = round_down(start, PAGE_SIZE * 2); end = round_up(end, PAGE_SIZE * 2); do { ginvt_va_mmid(addr); sync_ginv(); addr += PAGE_SIZE * 2; } while (addr < end); write_c0_memorymapid(old_mmid); instruction_hazard(); htw_start(); } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = start, .addr2 = end, }; smp_on_other_tlbs(flush_tlb_range_ipi, &fd); local_flush_tlb_range(vma, start, end); } else { unsigned int cpu; int exec = vma->vm_flags & VM_EXEC; for_each_online_cpu(cpu) { /* * flush_cache_range() will only fully flush icache if * the VMA is executable, otherwise we must invalidate * ASID without it appearing to has_valid_asid() as if * mm has been completely unused by that CPU. */ if (cpu != smp_processor_id() && cpu_context(cpu, mm)) set_cpu_context(cpu, mm, !exec); } local_flush_tlb_range(vma, start, end); } preempt_enable(); } static void flush_tlb_kernel_range_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_kernel_range(fd->addr1, fd->addr2); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { struct flush_tlb_data fd = { .addr1 = start, .addr2 = end, }; on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { u32 old_mmid; preempt_disable(); if (cpu_has_mmid) { htw_stop(); old_mmid = read_c0_memorymapid(); write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); mtc0_tlbw_hazard(); ginvt_va_mmid(page); sync_ginv(); write_c0_memorymapid(old_mmid); instruction_hazard(); htw_start(); } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd = { .vma = vma, .addr1 = page, }; smp_on_other_tlbs(flush_tlb_page_ipi, &fd); local_flush_tlb_page(vma, page); } else { unsigned int cpu; for_each_online_cpu(cpu) { /* * flush_cache_page() only does partial flushes, so * invalidate ASID without it appearing to * has_valid_asid() as if mm has been completely unused * by that CPU. */ if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) set_cpu_context(cpu, vma->vm_mm, 1); } local_flush_tlb_page(vma, page); } preempt_enable(); } static void flush_tlb_one_ipi(void *info) { unsigned long vaddr = (unsigned long) info; local_flush_tlb_one(vaddr); } void flush_tlb_one(unsigned long vaddr) { smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); } EXPORT_SYMBOL(flush_tlb_page); EXPORT_SYMBOL(flush_tlb_one); #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { if (mp_ops->cleanup_dead_cpu) mp_ops->cleanup_dead_cpu(cpu); } #endif #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST static void tick_broadcast_callee(void *info) { tick_receive_broadcast(); } static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) = CSD_INIT(tick_broadcast_callee, NULL); void tick_broadcast(const struct cpumask *mask) { call_single_data_t *csd; int cpu; for_each_cpu(cpu, mask) { csd = &per_cpu(tick_broadcast_csd, cpu); smp_call_function_single_async(cpu, csd); } } #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ |