Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2013-2015 Analog Devices Inc. * Author: Lars-Peter Clausen <lars@metafoo.de> */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/sched.h> #include <linux/poll.h> #include <linux/iio/buffer_impl.h> #include <linux/iio/buffer-dma.h> #include <linux/dma-mapping.h> #include <linux/sizes.h> /* * For DMA buffers the storage is sub-divided into so called blocks. Each block * has its own memory buffer. The size of the block is the granularity at which * memory is exchanged between the hardware and the application. Increasing the * basic unit of data exchange from one sample to one block decreases the * management overhead that is associated with each sample. E.g. if we say the * management overhead for one exchange is x and the unit of exchange is one * sample the overhead will be x for each sample. Whereas when using a block * which contains n samples the overhead per sample is reduced to x/n. This * allows to achieve much higher samplerates than what can be sustained with * the one sample approach. * * Blocks are exchanged between the DMA controller and the application via the * means of two queues. The incoming queue and the outgoing queue. Blocks on the * incoming queue are waiting for the DMA controller to pick them up and fill * them with data. Block on the outgoing queue have been filled with data and * are waiting for the application to dequeue them and read the data. * * A block can be in one of the following states: * * Owned by the application. In this state the application can read data from * the block. * * On the incoming list: Blocks on the incoming list are queued up to be * processed by the DMA controller. * * Owned by the DMA controller: The DMA controller is processing the block * and filling it with data. * * On the outgoing list: Blocks on the outgoing list have been successfully * processed by the DMA controller and contain data. They can be dequeued by * the application. * * Dead: A block that is dead has been marked as to be freed. It might still * be owned by either the application or the DMA controller at the moment. * But once they are done processing it instead of going to either the * incoming or outgoing queue the block will be freed. * * In addition to this blocks are reference counted and the memory associated * with both the block structure as well as the storage memory for the block * will be freed when the last reference to the block is dropped. This means a * block must not be accessed without holding a reference. * * The iio_dma_buffer implementation provides a generic infrastructure for * managing the blocks. * * A driver for a specific piece of hardware that has DMA capabilities need to * implement the submit() callback from the iio_dma_buffer_ops structure. This * callback is supposed to initiate the DMA transfer copying data from the * converter to the memory region of the block. Once the DMA transfer has been * completed the driver must call iio_dma_buffer_block_done() for the completed * block. * * Prior to this it must set the bytes_used field of the block contains * the actual number of bytes in the buffer. Typically this will be equal to the * size of the block, but if the DMA hardware has certain alignment requirements * for the transfer length it might choose to use less than the full size. In * either case it is expected that bytes_used is a multiple of the bytes per * datum, i.e. the block must not contain partial samples. * * The driver must call iio_dma_buffer_block_done() for each block it has * received through its submit_block() callback, even if it does not actually * perform a DMA transfer for the block, e.g. because the buffer was disabled * before the block transfer was started. In this case it should set bytes_used * to 0. * * In addition it is recommended that a driver implements the abort() callback. * It will be called when the buffer is disabled and can be used to cancel * pending and stop active transfers. * * The specific driver implementation should use the default callback * implementations provided by this module for the iio_buffer_access_funcs * struct. It may overload some callbacks with custom variants if the hardware * has special requirements that are not handled by the generic functions. If a * driver chooses to overload a callback it has to ensure that the generic * callback is called from within the custom callback. */ static void iio_buffer_block_release(struct kref *kref) { struct iio_dma_buffer_block *block = container_of(kref, struct iio_dma_buffer_block, kref); WARN_ON(block->state != IIO_BLOCK_STATE_DEAD); dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size), block->vaddr, block->phys_addr); iio_buffer_put(&block->queue->buffer); kfree(block); } static void iio_buffer_block_get(struct iio_dma_buffer_block *block) { kref_get(&block->kref); } static void iio_buffer_block_put(struct iio_dma_buffer_block *block) { kref_put(&block->kref, iio_buffer_block_release); } /* * dma_free_coherent can sleep, hence we need to take some special care to be * able to drop a reference from an atomic context. */ static LIST_HEAD(iio_dma_buffer_dead_blocks); static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock); static void iio_dma_buffer_cleanup_worker(struct work_struct *work) { struct iio_dma_buffer_block *block, *_block; LIST_HEAD(block_list); spin_lock_irq(&iio_dma_buffer_dead_blocks_lock); list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list); spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock); list_for_each_entry_safe(block, _block, &block_list, head) iio_buffer_block_release(&block->kref); } static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker); static void iio_buffer_block_release_atomic(struct kref *kref) { struct iio_dma_buffer_block *block; unsigned long flags; block = container_of(kref, struct iio_dma_buffer_block, kref); spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags); list_add_tail(&block->head, &iio_dma_buffer_dead_blocks); spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags); schedule_work(&iio_dma_buffer_cleanup_work); } /* * Version of iio_buffer_block_put() that can be called from atomic context */ static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block) { kref_put(&block->kref, iio_buffer_block_release_atomic); } static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf) { return container_of(buf, struct iio_dma_buffer_queue, buffer); } static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block( struct iio_dma_buffer_queue *queue, size_t size) { struct iio_dma_buffer_block *block; block = kzalloc(sizeof(*block), GFP_KERNEL); if (!block) return NULL; block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size), &block->phys_addr, GFP_KERNEL); if (!block->vaddr) { kfree(block); return NULL; } block->size = size; block->state = IIO_BLOCK_STATE_DEQUEUED; block->queue = queue; INIT_LIST_HEAD(&block->head); kref_init(&block->kref); iio_buffer_get(&queue->buffer); return block; } static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) { struct iio_dma_buffer_queue *queue = block->queue; /* * The buffer has already been freed by the application, just drop the * reference. */ if (block->state != IIO_BLOCK_STATE_DEAD) { block->state = IIO_BLOCK_STATE_DONE; list_add_tail(&block->head, &queue->outgoing); } } /** * iio_dma_buffer_block_done() - Indicate that a block has been completed * @block: The completed block * * Should be called when the DMA controller has finished handling the block to * pass back ownership of the block to the queue. */ void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) { struct iio_dma_buffer_queue *queue = block->queue; unsigned long flags; spin_lock_irqsave(&queue->list_lock, flags); _iio_dma_buffer_block_done(block); spin_unlock_irqrestore(&queue->list_lock, flags); iio_buffer_block_put_atomic(block); wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); } EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done); /** * iio_dma_buffer_block_list_abort() - Indicate that a list block has been * aborted * @queue: Queue for which to complete blocks. * @list: List of aborted blocks. All blocks in this list must be from @queue. * * Typically called from the abort() callback after the DMA controller has been * stopped. This will set bytes_used to 0 for each block in the list and then * hand the blocks back to the queue. */ void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue, struct list_head *list) { struct iio_dma_buffer_block *block, *_block; unsigned long flags; spin_lock_irqsave(&queue->list_lock, flags); list_for_each_entry_safe(block, _block, list, head) { list_del(&block->head); block->bytes_used = 0; _iio_dma_buffer_block_done(block); iio_buffer_block_put_atomic(block); } spin_unlock_irqrestore(&queue->list_lock, flags); wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); } EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort); static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block) { /* * If the core owns the block it can be re-used. This should be the * default case when enabling the buffer, unless the DMA controller does * not support abort and has not given back the block yet. */ switch (block->state) { case IIO_BLOCK_STATE_DEQUEUED: case IIO_BLOCK_STATE_QUEUED: case IIO_BLOCK_STATE_DONE: return true; default: return false; } } /** * iio_dma_buffer_request_update() - DMA buffer request_update callback * @buffer: The buffer which to request an update * * Should be used as the iio_dma_buffer_request_update() callback for * iio_buffer_access_ops struct for DMA buffers. */ int iio_dma_buffer_request_update(struct iio_buffer *buffer) { struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); struct iio_dma_buffer_block *block; bool try_reuse = false; size_t size; int ret = 0; int i; /* * Split the buffer into two even parts. This is used as a double * buffering scheme with usually one block at a time being used by the * DMA and the other one by the application. */ size = DIV_ROUND_UP(queue->buffer.bytes_per_datum * queue->buffer.length, 2); mutex_lock(&queue->lock); /* Allocations are page aligned */ if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size)) try_reuse = true; queue->fileio.block_size = size; queue->fileio.active_block = NULL; spin_lock_irq(&queue->list_lock); for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { block = queue->fileio.blocks[i]; /* If we can't re-use it free it */ if (block && (!iio_dma_block_reusable(block) || !try_reuse)) block->state = IIO_BLOCK_STATE_DEAD; } /* * At this point all blocks are either owned by the core or marked as * dead. This means we can reset the lists without having to fear * corrution. */ INIT_LIST_HEAD(&queue->outgoing); spin_unlock_irq(&queue->list_lock); INIT_LIST_HEAD(&queue->incoming); for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { if (queue->fileio.blocks[i]) { block = queue->fileio.blocks[i]; if (block->state == IIO_BLOCK_STATE_DEAD) { /* Could not reuse it */ iio_buffer_block_put(block); block = NULL; } else { block->size = size; } } else { block = NULL; } if (!block) { block = iio_dma_buffer_alloc_block(queue, size); if (!block) { ret = -ENOMEM; goto out_unlock; } queue->fileio.blocks[i] = block; } block->state = IIO_BLOCK_STATE_QUEUED; list_add_tail(&block->head, &queue->incoming); } out_unlock: mutex_unlock(&queue->lock); return ret; } EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update); static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue, struct iio_dma_buffer_block *block) { int ret; /* * If the hardware has already been removed we put the block into * limbo. It will neither be on the incoming nor outgoing list, nor will * it ever complete. It will just wait to be freed eventually. */ if (!queue->ops) return; block->state = IIO_BLOCK_STATE_ACTIVE; iio_buffer_block_get(block); ret = queue->ops->submit(queue, block); if (ret) { /* * This is a bit of a problem and there is not much we can do * other then wait for the buffer to be disabled and re-enabled * and try again. But it should not really happen unless we run * out of memory or something similar. * * TODO: Implement support in the IIO core to allow buffers to * notify consumers that something went wrong and the buffer * should be disabled. */ iio_buffer_block_put(block); } } /** * iio_dma_buffer_enable() - Enable DMA buffer * @buffer: IIO buffer to enable * @indio_dev: IIO device the buffer is attached to * * Needs to be called when the device that the buffer is attached to starts * sampling. Typically should be the iio_buffer_access_ops enable callback. * * This will allocate the DMA buffers and start the DMA transfers. */ int iio_dma_buffer_enable(struct iio_buffer *buffer, struct iio_dev *indio_dev) { struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); struct iio_dma_buffer_block *block, *_block; mutex_lock(&queue->lock); queue->active = true; list_for_each_entry_safe(block, _block, &queue->incoming, head) { list_del(&block->head); iio_dma_buffer_submit_block(queue, block); } mutex_unlock(&queue->lock); return 0; } EXPORT_SYMBOL_GPL(iio_dma_buffer_enable); /** * iio_dma_buffer_disable() - Disable DMA buffer * @buffer: IIO DMA buffer to disable * @indio_dev: IIO device the buffer is attached to * * Needs to be called when the device that the buffer is attached to stops * sampling. Typically should be the iio_buffer_access_ops disable callback. */ int iio_dma_buffer_disable(struct iio_buffer *buffer, struct iio_dev *indio_dev) { struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); mutex_lock(&queue->lock); queue->active = false; if (queue->ops && queue->ops->abort) queue->ops->abort(queue); mutex_unlock(&queue->lock); return 0; } EXPORT_SYMBOL_GPL(iio_dma_buffer_disable); static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue, struct iio_dma_buffer_block *block) { if (block->state == IIO_BLOCK_STATE_DEAD) { iio_buffer_block_put(block); } else if (queue->active) { iio_dma_buffer_submit_block(queue, block); } else { block->state = IIO_BLOCK_STATE_QUEUED; list_add_tail(&block->head, &queue->incoming); } } static struct iio_dma_buffer_block *iio_dma_buffer_dequeue( struct iio_dma_buffer_queue *queue) { struct iio_dma_buffer_block *block; spin_lock_irq(&queue->list_lock); block = list_first_entry_or_null(&queue->outgoing, struct iio_dma_buffer_block, head); if (block != NULL) { list_del(&block->head); block->state = IIO_BLOCK_STATE_DEQUEUED; } spin_unlock_irq(&queue->list_lock); return block; } /** * iio_dma_buffer_read() - DMA buffer read callback * @buffer: Buffer to read form * @n: Number of bytes to read * @user_buffer: Userspace buffer to copy the data to * * Should be used as the read callback for iio_buffer_access_ops * struct for DMA buffers. */ int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n, char __user *user_buffer) { struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); struct iio_dma_buffer_block *block; int ret; if (n < buffer->bytes_per_datum) return -EINVAL; mutex_lock(&queue->lock); if (!queue->fileio.active_block) { block = iio_dma_buffer_dequeue(queue); if (block == NULL) { ret = 0; goto out_unlock; } queue->fileio.pos = 0; queue->fileio.active_block = block; } else { block = queue->fileio.active_block; } n = rounddown(n, buffer->bytes_per_datum); if (n > block->bytes_used - queue->fileio.pos) n = block->bytes_used - queue->fileio.pos; if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) { ret = -EFAULT; goto out_unlock; } queue->fileio.pos += n; if (queue->fileio.pos == block->bytes_used) { queue->fileio.active_block = NULL; iio_dma_buffer_enqueue(queue, block); } ret = n; out_unlock: mutex_unlock(&queue->lock); return ret; } EXPORT_SYMBOL_GPL(iio_dma_buffer_read); /** * iio_dma_buffer_data_available() - DMA buffer data_available callback * @buf: Buffer to check for data availability * * Should be used as the data_available callback for iio_buffer_access_ops * struct for DMA buffers. */ size_t iio_dma_buffer_data_available(struct iio_buffer *buf) { struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf); struct iio_dma_buffer_block *block; size_t data_available = 0; /* * For counting the available bytes we'll use the size of the block not * the number of actual bytes available in the block. Otherwise it is * possible that we end up with a value that is lower than the watermark * but won't increase since all blocks are in use. */ mutex_lock(&queue->lock); if (queue->fileio.active_block) data_available += queue->fileio.active_block->size; spin_lock_irq(&queue->list_lock); list_for_each_entry(block, &queue->outgoing, head) data_available += block->size; spin_unlock_irq(&queue->list_lock); mutex_unlock(&queue->lock); return data_available; } EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available); /** * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback * @buffer: Buffer to set the bytes-per-datum for * @bpd: The new bytes-per-datum value * * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops * struct for DMA buffers. */ int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd) { buffer->bytes_per_datum = bpd; return 0; } EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum); /** * iio_dma_buffer_set_length - DMA buffer set_length callback * @buffer: Buffer to set the length for * @length: The new buffer length * * Should be used as the set_length callback for iio_buffer_access_ops * struct for DMA buffers. */ int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length) { /* Avoid an invalid state */ if (length < 2) length = 2; buffer->length = length; buffer->watermark = length / 2; return 0; } EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length); /** * iio_dma_buffer_init() - Initialize DMA buffer queue * @queue: Buffer to initialize * @dev: DMA device * @ops: DMA buffer queue callback operations * * The DMA device will be used by the queue to do DMA memory allocations. So it * should refer to the device that will perform the DMA to ensure that * allocations are done from a memory region that can be accessed by the device. */ int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue, struct device *dev, const struct iio_dma_buffer_ops *ops) { iio_buffer_init(&queue->buffer); queue->buffer.length = PAGE_SIZE; queue->buffer.watermark = queue->buffer.length / 2; queue->dev = dev; queue->ops = ops; INIT_LIST_HEAD(&queue->incoming); INIT_LIST_HEAD(&queue->outgoing); mutex_init(&queue->lock); spin_lock_init(&queue->list_lock); return 0; } EXPORT_SYMBOL_GPL(iio_dma_buffer_init); /** * iio_dma_buffer_exit() - Cleanup DMA buffer queue * @queue: Buffer to cleanup * * After this function has completed it is safe to free any resources that are * associated with the buffer and are accessed inside the callback operations. */ void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue) { unsigned int i; mutex_lock(&queue->lock); spin_lock_irq(&queue->list_lock); for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { if (!queue->fileio.blocks[i]) continue; queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD; } INIT_LIST_HEAD(&queue->outgoing); spin_unlock_irq(&queue->list_lock); INIT_LIST_HEAD(&queue->incoming); for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { if (!queue->fileio.blocks[i]) continue; iio_buffer_block_put(queue->fileio.blocks[i]); queue->fileio.blocks[i] = NULL; } queue->fileio.active_block = NULL; queue->ops = NULL; mutex_unlock(&queue->lock); } EXPORT_SYMBOL_GPL(iio_dma_buffer_exit); /** * iio_dma_buffer_release() - Release final buffer resources * @queue: Buffer to release * * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be * called in the buffers release callback implementation right before freeing * the memory associated with the buffer. */ void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue) { mutex_destroy(&queue->lock); } EXPORT_SYMBOL_GPL(iio_dma_buffer_release); MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); MODULE_DESCRIPTION("DMA buffer for the IIO framework"); MODULE_LICENSE("GPL v2"); |