Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ #include <ctype.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <libelf.h> #include <gelf.h> #include <unistd.h> #include <linux/ptrace.h> #include <linux/kernel.h> /* s8 will be marked as poison while it's a reg of riscv */ #if defined(__riscv) #define rv_s8 s8 #endif #include "bpf.h" #include "libbpf.h" #include "libbpf_common.h" #include "libbpf_internal.h" #include "hashmap.h" /* libbpf's USDT support consists of BPF-side state/code and user-space * state/code working together in concert. BPF-side parts are defined in * usdt.bpf.h header library. User-space state is encapsulated by struct * usdt_manager and all the supporting code centered around usdt_manager. * * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that * don't support BPF cookie (see below). These two maps are implicitly * embedded into user's end BPF object file when user's code included * usdt.bpf.h. This means that libbpf doesn't do anything special to create * these USDT support maps. They are created by normal libbpf logic of * instantiating BPF maps when opening and loading BPF object. * * As such, libbpf is basically unaware of the need to do anything * USDT-related until the very first call to bpf_program__attach_usdt(), which * can be called by user explicitly or happen automatically during skeleton * attach (or, equivalently, through generic bpf_program__attach() call). At * this point, libbpf will instantiate and initialize struct usdt_manager and * store it in bpf_object. USDT manager is per-BPF object construct, as each * independent BPF object might or might not have USDT programs, and thus all * the expected USDT-related state. There is no coordination between two * bpf_object in parts of USDT attachment, they are oblivious of each other's * existence and libbpf is just oblivious, dealing with bpf_object-specific * USDT state. * * Quick crash course on USDTs. * * From user-space application's point of view, USDT is essentially just * a slightly special function call that normally has zero overhead, unless it * is being traced by some external entity (e.g, BPF-based tool). Here's how * a typical application can trigger USDT probe: * * #include <sys/sdt.h> // provided by systemtap-sdt-devel package * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h * * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y); * * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each * individual USDT has a fixed number of arguments (3 in the above example) * and specifies values of each argument as if it was a function call. * * USDT call is actually not a function call, but is instead replaced by * a single NOP instruction (thus zero overhead, effectively). But in addition * to that, those USDT macros generate special SHT_NOTE ELF records in * .note.stapsdt ELF section. Here's an example USDT definition as emitted by * `readelf -n <binary>`: * * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors) * Provider: test * Name: usdt12 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil * * In this case we have USDT test:usdt12 with 12 arguments. * * Location and base are offsets used to calculate absolute IP address of that * NOP instruction that kernel can replace with an interrupt instruction to * trigger instrumentation code (BPF program for all that we care about). * * Semaphore above is and optional feature. It records an address of a 2-byte * refcount variable (normally in '.probes' ELF section) used for signaling if * there is anything that is attached to USDT. This is useful for user * applications if, for example, they need to prepare some arguments that are * passed only to USDTs and preparation is expensive. By checking if USDT is * "activated", an application can avoid paying those costs unnecessarily. * Recent enough kernel has built-in support for automatically managing this * refcount, which libbpf expects and relies on. If USDT is defined without * associated semaphore, this value will be zero. See selftests for semaphore * examples. * * Arguments is the most interesting part. This USDT specification string is * providing information about all the USDT arguments and their locations. The * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and * whether the argument is signed or unsigned (negative size means signed). * The part after @ sign is assembly-like definition of argument location * (see [0] for more details). Technically, assembler can provide some pretty * advanced definitions, but libbpf is currently supporting three most common * cases: * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9); * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer * whose value is in register %rdx"; * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which * specifies signed 32-bit integer stored at offset -1204 bytes from * memory address stored in %rbp. * * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation * * During attachment, libbpf parses all the relevant USDT specifications and * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side * code through spec map. This allows BPF applications to quickly fetch the * actual value at runtime using a simple BPF-side code. * * With basics out of the way, let's go over less immediately obvious aspects * of supporting USDTs. * * First, there is no special USDT BPF program type. It is actually just * a uprobe BPF program (which for kernel, at least currently, is just a kprobe * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference * that uprobe is usually attached at the function entry, while USDT will * normally will be somewhere inside the function. But it should always be * pointing to NOP instruction, which makes such uprobes the fastest uprobe * kind. * * Second, it's important to realize that such STAP_PROBEn(provider, name, ...) * macro invocations can end up being inlined many-many times, depending on * specifics of each individual user application. So single conceptual USDT * (identified by provider:name pair of identifiers) is, generally speaking, * multiple uprobe locations (USDT call sites) in different places in user * application. Further, again due to inlining, each USDT call site might end * up having the same argument #N be located in a different place. In one call * site it could be a constant, in another will end up in a register, and in * yet another could be some other register or even somewhere on the stack. * * As such, "attaching to USDT" means (in general case) attaching the same * uprobe BPF program to multiple target locations in user application, each * potentially having a completely different USDT spec associated with it. * To wire all this up together libbpf allocates a unique integer spec ID for * each unique USDT spec. Spec IDs are allocated as sequential small integers * so that they can be used as keys in array BPF map (for performance reasons). * Spec ID allocation and accounting is big part of what usdt_manager is * about. This state has to be maintained per-BPF object and coordinate * between different USDT attachments within the same BPF object. * * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out * as struct usdt_spec. Each invocation of BPF program at runtime needs to * know its associated spec ID. It gets it either through BPF cookie, which * libbpf sets to spec ID during attach time, or, if kernel is too old to * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such * case. The latter means that some modes of operation can't be supported * without BPF cookie. Such mode is attaching to shared library "generically", * without specifying target process. In such case, it's impossible to * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode * is not supported without BPF cookie support. * * Note that libbpf is using BPF cookie functionality for its own internal * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf * provides conceptually equivalent USDT cookie support. It's still u64 * user-provided value that can be associated with USDT attachment. Note that * this will be the same value for all USDT call sites within the same single * *logical* USDT attachment. This makes sense because to user attaching to * USDT is a single BPF program triggered for singular USDT probe. The fact * that this is done at multiple actual locations is a mostly hidden * implementation details. This USDT cookie value can be fetched with * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h * * Lastly, while single USDT can have tons of USDT call sites, it doesn't * necessarily have that many different USDT specs. It very well might be * that 1000 USDT call sites only need 5 different USDT specs, because all the * arguments are typically contained in a small set of registers or stack * locations. As such, it's wasteful to allocate as many USDT spec IDs as * there are USDT call sites. So libbpf tries to be frugal and performs * on-the-fly deduplication during a single USDT attachment to only allocate * the minimal required amount of unique USDT specs (and thus spec IDs). This * is trivially achieved by using USDT spec string (Arguments string from USDT * note) as a lookup key in a hashmap. USDT spec string uniquely defines * everything about how to fetch USDT arguments, so two USDT call sites * sharing USDT spec string can safely share the same USDT spec and spec ID. * Note, this spec string deduplication is happening only during the same USDT * attachment, so each USDT spec shares the same USDT cookie value. This is * not generally true for other USDT attachments within the same BPF object, * as even if USDT spec string is the same, USDT cookie value can be * different. It was deemed excessive to try to deduplicate across independent * USDT attachments by taking into account USDT spec string *and* USDT cookie * value, which would complicated spec ID accounting significantly for little * gain. */ #define USDT_BASE_SEC ".stapsdt.base" #define USDT_SEMA_SEC ".probes" #define USDT_NOTE_SEC ".note.stapsdt" #define USDT_NOTE_TYPE 3 #define USDT_NOTE_NAME "stapsdt" /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */ enum usdt_arg_type { USDT_ARG_CONST, USDT_ARG_REG, USDT_ARG_REG_DEREF, }; /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */ struct usdt_arg_spec { __u64 val_off; enum usdt_arg_type arg_type; short reg_off; bool arg_signed; char arg_bitshift; }; /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */ #define USDT_MAX_ARG_CNT 12 /* should match struct __bpf_usdt_spec from usdt.bpf.h */ struct usdt_spec { struct usdt_arg_spec args[USDT_MAX_ARG_CNT]; __u64 usdt_cookie; short arg_cnt; }; struct usdt_note { const char *provider; const char *name; /* USDT args specification string, e.g.: * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx" */ const char *args; long loc_addr; long base_addr; long sema_addr; }; struct usdt_target { long abs_ip; long rel_ip; long sema_off; struct usdt_spec spec; const char *spec_str; }; struct usdt_manager { struct bpf_map *specs_map; struct bpf_map *ip_to_spec_id_map; int *free_spec_ids; size_t free_spec_cnt; size_t next_free_spec_id; bool has_bpf_cookie; bool has_sema_refcnt; }; struct usdt_manager *usdt_manager_new(struct bpf_object *obj) { static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset"; struct usdt_manager *man; struct bpf_map *specs_map, *ip_to_spec_id_map; specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs"); ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id"); if (!specs_map || !ip_to_spec_id_map) { pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n"); return ERR_PTR(-ESRCH); } man = calloc(1, sizeof(*man)); if (!man) return ERR_PTR(-ENOMEM); man->specs_map = specs_map; man->ip_to_spec_id_map = ip_to_spec_id_map; /* Detect if BPF cookie is supported for kprobes. * We don't need IP-to-ID mapping if we can use BPF cookies. * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value") */ man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE); /* Detect kernel support for automatic refcounting of USDT semaphore. * If this is not supported, USDTs with semaphores will not be supported. * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe") */ man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0; return man; } void usdt_manager_free(struct usdt_manager *man) { if (IS_ERR_OR_NULL(man)) return; free(man->free_spec_ids); free(man); } static int sanity_check_usdt_elf(Elf *elf, const char *path) { GElf_Ehdr ehdr; int endianness; if (elf_kind(elf) != ELF_K_ELF) { pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path); return -EBADF; } switch (gelf_getclass(elf)) { case ELFCLASS64: if (sizeof(void *) != 8) { pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path); return -EBADF; } break; case ELFCLASS32: if (sizeof(void *) != 4) { pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path); return -EBADF; } break; default: pr_warn("usdt: unsupported ELF class for '%s'\n", path); return -EBADF; } if (!gelf_getehdr(elf, &ehdr)) return -EINVAL; if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) { pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n", path, ehdr.e_type); return -EBADF; } #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ endianness = ELFDATA2LSB; #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ endianness = ELFDATA2MSB; #else # error "Unrecognized __BYTE_ORDER__" #endif if (endianness != ehdr.e_ident[EI_DATA]) { pr_warn("usdt: ELF endianness mismatch for '%s'\n", path); return -EBADF; } return 0; } static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn) { Elf_Scn *sec = NULL; size_t shstrndx; if (elf_getshdrstrndx(elf, &shstrndx)) return -EINVAL; /* check if ELF is corrupted and avoid calling elf_strptr if yes */ if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) return -EINVAL; while ((sec = elf_nextscn(elf, sec)) != NULL) { char *name; if (!gelf_getshdr(sec, shdr)) return -EINVAL; name = elf_strptr(elf, shstrndx, shdr->sh_name); if (name && strcmp(sec_name, name) == 0) { *scn = sec; return 0; } } return -ENOENT; } struct elf_seg { long start; long end; long offset; bool is_exec; }; static int cmp_elf_segs(const void *_a, const void *_b) { const struct elf_seg *a = _a; const struct elf_seg *b = _b; return a->start < b->start ? -1 : 1; } static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt) { GElf_Phdr phdr; size_t n; int i, err; struct elf_seg *seg; void *tmp; *seg_cnt = 0; if (elf_getphdrnum(elf, &n)) { err = -errno; return err; } for (i = 0; i < n; i++) { if (!gelf_getphdr(elf, i, &phdr)) { err = -errno; return err; } pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n", i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset, (long)phdr.p_type, (long)phdr.p_flags); if (phdr.p_type != PT_LOAD) continue; tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); if (!tmp) return -ENOMEM; *segs = tmp; seg = *segs + *seg_cnt; (*seg_cnt)++; seg->start = phdr.p_vaddr; seg->end = phdr.p_vaddr + phdr.p_memsz; seg->offset = phdr.p_offset; seg->is_exec = phdr.p_flags & PF_X; } if (*seg_cnt == 0) { pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path); return -ESRCH; } qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); return 0; } static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt) { char path[PATH_MAX], line[PATH_MAX], mode[16]; size_t seg_start, seg_end, seg_off; struct elf_seg *seg; int tmp_pid, i, err; FILE *f; *seg_cnt = 0; /* Handle containerized binaries only accessible from * /proc/<pid>/root/<path>. They will be reported as just /<path> in * /proc/<pid>/maps. */ if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid) goto proceed; if (!realpath(lib_path, path)) { pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n", lib_path, -errno); libbpf_strlcpy(path, lib_path, sizeof(path)); } proceed: sprintf(line, "/proc/%d/maps", pid); f = fopen(line, "re"); if (!f) { err = -errno; pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n", line, lib_path, err); return err; } /* We need to handle lines with no path at the end: * * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so */ while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n", &seg_start, &seg_end, mode, &seg_off, line) == 5) { void *tmp; /* to handle no path case (see above) we need to capture line * without skipping any whitespaces. So we need to strip * leading whitespaces manually here */ i = 0; while (isblank(line[i])) i++; if (strcmp(line + i, path) != 0) continue; pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n", path, seg_start, seg_end, mode, seg_off); /* ignore non-executable sections for shared libs */ if (mode[2] != 'x') continue; tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); if (!tmp) { err = -ENOMEM; goto err_out; } *segs = tmp; seg = *segs + *seg_cnt; *seg_cnt += 1; seg->start = seg_start; seg->end = seg_end; seg->offset = seg_off; seg->is_exec = true; } if (*seg_cnt == 0) { pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n", lib_path, path, pid); err = -ESRCH; goto err_out; } qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); err = 0; err_out: fclose(f); return err; } static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr) { struct elf_seg *seg; int i; /* for ELF binaries (both executables and shared libraries), we are * given virtual address (absolute for executables, relative for * libraries) which should match address range of [seg_start, seg_end) */ for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { if (seg->start <= virtaddr && virtaddr < seg->end) return seg; } return NULL; } static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset) { struct elf_seg *seg; int i; /* for VMA segments from /proc/<pid>/maps file, provided "address" is * actually a file offset, so should be fall within logical * offset-based range of [offset_start, offset_end) */ for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start)) return seg; } return NULL; } static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, struct usdt_note *usdt_note); static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie); static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid, const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie, struct usdt_target **out_targets, size_t *out_target_cnt) { size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0; struct elf_seg *segs = NULL, *vma_segs = NULL; struct usdt_target *targets = NULL, *target; long base_addr = 0; Elf_Scn *notes_scn, *base_scn; GElf_Shdr base_shdr, notes_shdr; GElf_Ehdr ehdr; GElf_Nhdr nhdr; Elf_Data *data; int err; *out_targets = NULL; *out_target_cnt = 0; err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn); if (err) { pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path); return err; } if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) { pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path); return -EINVAL; } err = parse_elf_segs(elf, path, &segs, &seg_cnt); if (err) { pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err); goto err_out; } /* .stapsdt.base ELF section is optional, but is used for prelink * offset compensation (see a big comment further below) */ if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0) base_addr = base_shdr.sh_addr; data = elf_getdata(notes_scn, 0); off = 0; while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) { long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0; struct usdt_note note; struct elf_seg *seg = NULL; void *tmp; err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, ¬e); if (err) goto err_out; if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0) continue; /* We need to compensate "prelink effect". See [0] for details, * relevant parts quoted here: * * Each SDT probe also expands into a non-allocated ELF note. You can * find this by looking at SHT_NOTE sections and decoding the format; * see below for details. Because the note is non-allocated, it means * there is no runtime cost, and also preserved in both stripped files * and .debug files. * * However, this means that prelink won't adjust the note's contents * for address offsets. Instead, this is done via the .stapsdt.base * section. This is a special section that is added to the text. We * will only ever have one of these sections in a final link and it * will only ever be one byte long. Nothing about this section itself * matters, we just use it as a marker to detect prelink address * adjustments. * * Each probe note records the link-time address of the .stapsdt.base * section alongside the probe PC address. The decoder compares the * base address stored in the note with the .stapsdt.base section's * sh_addr. Initially these are the same, but the section header will * be adjusted by prelink. So the decoder applies the difference to * the probe PC address to get the correct prelinked PC address; the * same adjustment is applied to the semaphore address, if any. * * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation */ usdt_abs_ip = note.loc_addr; if (base_addr) usdt_abs_ip += base_addr - note.base_addr; /* When attaching uprobes (which is what USDTs basically are) * kernel expects file offset to be specified, not a relative * virtual address, so we need to translate virtual address to * file offset, for both ET_EXEC and ET_DYN binaries. */ seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip); if (!seg) { err = -ESRCH; pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n", usdt_provider, usdt_name, path, usdt_abs_ip); goto err_out; } if (!seg->is_exec) { err = -ESRCH; pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n", path, seg->start, seg->end, usdt_provider, usdt_name, usdt_abs_ip); goto err_out; } /* translate from virtual address to file offset */ usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset; if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) { /* If we don't have BPF cookie support but need to * attach to a shared library, we'll need to know and * record absolute addresses of attach points due to * the need to lookup USDT spec by absolute IP of * triggered uprobe. Doing this resolution is only * possible when we have a specific PID of the process * that's using specified shared library. BPF cookie * removes the absolute address limitation as we don't * need to do this lookup (we just use BPF cookie as * an index of USDT spec), so for newer kernels with * BPF cookie support libbpf supports USDT attachment * to shared libraries with no PID filter. */ if (pid < 0) { pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n"); err = -ENOTSUP; goto err_out; } /* vma_segs are lazily initialized only if necessary */ if (vma_seg_cnt == 0) { err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt); if (err) { pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n", pid, path, err); goto err_out; } } seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip); if (!seg) { err = -ESRCH; pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n", usdt_provider, usdt_name, path, usdt_rel_ip); goto err_out; } usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip; } pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n", usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args, seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0); /* Adjust semaphore address to be a file offset */ if (note.sema_addr) { if (!man->has_sema_refcnt) { pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n", usdt_provider, usdt_name, path); err = -ENOTSUP; goto err_out; } seg = find_elf_seg(segs, seg_cnt, note.sema_addr); if (!seg) { err = -ESRCH; pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n", usdt_provider, usdt_name, path, note.sema_addr); goto err_out; } if (seg->is_exec) { err = -ESRCH; pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n", path, seg->start, seg->end, usdt_provider, usdt_name, note.sema_addr); goto err_out; } usdt_sema_off = note.sema_addr - seg->start + seg->offset; pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n", usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, note.sema_addr, note.base_addr, usdt_sema_off, seg->start, seg->end, seg->offset); } /* Record adjusted addresses and offsets and parse USDT spec */ tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets)); if (!tmp) { err = -ENOMEM; goto err_out; } targets = tmp; target = &targets[target_cnt]; memset(target, 0, sizeof(*target)); target->abs_ip = usdt_abs_ip; target->rel_ip = usdt_rel_ip; target->sema_off = usdt_sema_off; /* notes.args references strings from ELF itself, so they can * be referenced safely until elf_end() call */ target->spec_str = note.args; err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie); if (err) goto err_out; target_cnt++; } *out_targets = targets; *out_target_cnt = target_cnt; err = target_cnt; err_out: free(segs); free(vma_segs); if (err < 0) free(targets); return err; } struct bpf_link_usdt { struct bpf_link link; struct usdt_manager *usdt_man; size_t spec_cnt; int *spec_ids; size_t uprobe_cnt; struct { long abs_ip; struct bpf_link *link; } *uprobes; }; static int bpf_link_usdt_detach(struct bpf_link *link) { struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); struct usdt_manager *man = usdt_link->usdt_man; int i; for (i = 0; i < usdt_link->uprobe_cnt; i++) { /* detach underlying uprobe link */ bpf_link__destroy(usdt_link->uprobes[i].link); /* there is no need to update specs map because it will be * unconditionally overwritten on subsequent USDT attaches, * but if BPF cookies are not used we need to remove entry * from ip_to_spec_id map, otherwise we'll run into false * conflicting IP errors */ if (!man->has_bpf_cookie) { /* not much we can do about errors here */ (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map), &usdt_link->uprobes[i].abs_ip); } } /* try to return the list of previously used spec IDs to usdt_manager * for future reuse for subsequent USDT attaches */ if (!man->free_spec_ids) { /* if there were no free spec IDs yet, just transfer our IDs */ man->free_spec_ids = usdt_link->spec_ids; man->free_spec_cnt = usdt_link->spec_cnt; usdt_link->spec_ids = NULL; } else { /* otherwise concat IDs */ size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt; int *new_free_ids; new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt, sizeof(*new_free_ids)); /* If we couldn't resize free_spec_ids, we'll just leak * a bunch of free IDs; this is very unlikely to happen and if * system is so exhausted on memory, it's the least of user's * concerns, probably. * So just do our best here to return those IDs to usdt_manager. * Another edge case when we can legitimately get NULL is when * new_cnt is zero, which can happen in some edge cases, so we * need to be careful about that. */ if (new_free_ids || new_cnt == 0) { memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids, usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids)); man->free_spec_ids = new_free_ids; man->free_spec_cnt = new_cnt; } } return 0; } static void bpf_link_usdt_dealloc(struct bpf_link *link) { struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); free(usdt_link->spec_ids); free(usdt_link->uprobes); free(usdt_link); } static size_t specs_hash_fn(long key, void *ctx) { return str_hash((char *)key); } static bool specs_equal_fn(long key1, long key2, void *ctx) { return strcmp((char *)key1, (char *)key2) == 0; } static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash, struct bpf_link_usdt *link, struct usdt_target *target, int *spec_id, bool *is_new) { long tmp; void *new_ids; int err; /* check if we already allocated spec ID for this spec string */ if (hashmap__find(specs_hash, target->spec_str, &tmp)) { *spec_id = tmp; *is_new = false; return 0; } /* otherwise it's a new ID that needs to be set up in specs map and * returned back to usdt_manager when USDT link is detached */ new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids)); if (!new_ids) return -ENOMEM; link->spec_ids = new_ids; /* get next free spec ID, giving preference to free list, if not empty */ if (man->free_spec_cnt) { *spec_id = man->free_spec_ids[man->free_spec_cnt - 1]; /* cache spec ID for current spec string for future lookups */ err = hashmap__add(specs_hash, target->spec_str, *spec_id); if (err) return err; man->free_spec_cnt--; } else { /* don't allocate spec ID bigger than what fits in specs map */ if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map)) return -E2BIG; *spec_id = man->next_free_spec_id; /* cache spec ID for current spec string for future lookups */ err = hashmap__add(specs_hash, target->spec_str, *spec_id); if (err) return err; man->next_free_spec_id++; } /* remember new spec ID in the link for later return back to free list on detach */ link->spec_ids[link->spec_cnt] = *spec_id; link->spec_cnt++; *is_new = true; return 0; } struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog, pid_t pid, const char *path, const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie) { int i, fd, err, spec_map_fd, ip_map_fd; LIBBPF_OPTS(bpf_uprobe_opts, opts); struct hashmap *specs_hash = NULL; struct bpf_link_usdt *link = NULL; struct usdt_target *targets = NULL; size_t target_cnt; Elf *elf; spec_map_fd = bpf_map__fd(man->specs_map); ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map); fd = open(path, O_RDONLY | O_CLOEXEC); if (fd < 0) { err = -errno; pr_warn("usdt: failed to open ELF binary '%s': %d\n", path, err); return libbpf_err_ptr(err); } elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); if (!elf) { err = -EBADF; pr_warn("usdt: failed to parse ELF binary '%s': %s\n", path, elf_errmsg(-1)); goto err_out; } err = sanity_check_usdt_elf(elf, path); if (err) goto err_out; /* normalize PID filter */ if (pid < 0) pid = -1; else if (pid == 0) pid = getpid(); /* discover USDT in given binary, optionally limiting * activations to a given PID, if pid > 0 */ err = collect_usdt_targets(man, elf, path, pid, usdt_provider, usdt_name, usdt_cookie, &targets, &target_cnt); if (err <= 0) { err = (err == 0) ? -ENOENT : err; goto err_out; } specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL); if (IS_ERR(specs_hash)) { err = PTR_ERR(specs_hash); goto err_out; } link = calloc(1, sizeof(*link)); if (!link) { err = -ENOMEM; goto err_out; } link->usdt_man = man; link->link.detach = &bpf_link_usdt_detach; link->link.dealloc = &bpf_link_usdt_dealloc; link->uprobes = calloc(target_cnt, sizeof(*link->uprobes)); if (!link->uprobes) { err = -ENOMEM; goto err_out; } for (i = 0; i < target_cnt; i++) { struct usdt_target *target = &targets[i]; struct bpf_link *uprobe_link; bool is_new; int spec_id; /* Spec ID can be either reused or newly allocated. If it is * newly allocated, we'll need to fill out spec map, otherwise * entire spec should be valid and can be just used by a new * uprobe. We reuse spec when USDT arg spec is identical. We * also never share specs between two different USDT * attachments ("links"), so all the reused specs already * share USDT cookie value implicitly. */ err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new); if (err) goto err_out; if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) { err = -errno; pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n", spec_id, usdt_provider, usdt_name, path, err); goto err_out; } if (!man->has_bpf_cookie && bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) { err = -errno; if (err == -EEXIST) { pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n", spec_id, usdt_provider, usdt_name, path); } else { pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n", target->abs_ip, spec_id, usdt_provider, usdt_name, path, err); } goto err_out; } opts.ref_ctr_offset = target->sema_off; opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0; uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path, target->rel_ip, &opts); err = libbpf_get_error(uprobe_link); if (err) { pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n", i, usdt_provider, usdt_name, path, err); goto err_out; } link->uprobes[i].link = uprobe_link; link->uprobes[i].abs_ip = target->abs_ip; link->uprobe_cnt++; } free(targets); hashmap__free(specs_hash); elf_end(elf); close(fd); return &link->link; err_out: if (link) bpf_link__destroy(&link->link); free(targets); hashmap__free(specs_hash); if (elf) elf_end(elf); close(fd); return libbpf_err_ptr(err); } /* Parse out USDT ELF note from '.note.stapsdt' section. * Logic inspired by perf's code. */ static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, struct usdt_note *note) { const char *provider, *name, *args; long addrs[3]; size_t len; /* sanity check USDT note name and type first */ if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0) return -EINVAL; if (nhdr->n_type != USDT_NOTE_TYPE) return -EINVAL; /* sanity check USDT note contents ("description" in ELF terminology) */ len = nhdr->n_descsz; data = data + desc_off; /* +3 is the very minimum required to store three empty strings */ if (len < sizeof(addrs) + 3) return -EINVAL; /* get location, base, and semaphore addrs */ memcpy(&addrs, data, sizeof(addrs)); /* parse string fields: provider, name, args */ provider = data + sizeof(addrs); name = (const char *)memchr(provider, '\0', data + len - provider); if (!name) /* non-zero-terminated provider */ return -EINVAL; name++; if (name >= data + len || *name == '\0') /* missing or empty name */ return -EINVAL; args = memchr(name, '\0', data + len - name); if (!args) /* non-zero-terminated name */ return -EINVAL; ++args; if (args >= data + len) /* missing arguments spec */ return -EINVAL; note->provider = provider; note->name = name; if (*args == '\0' || *args == ':') note->args = ""; else note->args = args; note->loc_addr = addrs[0]; note->base_addr = addrs[1]; note->sema_addr = addrs[2]; return 0; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz); static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie) { struct usdt_arg_spec *arg; const char *s; int arg_sz, len; spec->usdt_cookie = usdt_cookie; spec->arg_cnt = 0; s = note->args; while (s[0]) { if (spec->arg_cnt >= USDT_MAX_ARG_CNT) { pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n", USDT_MAX_ARG_CNT, note->provider, note->name, note->args); return -E2BIG; } arg = &spec->args[spec->arg_cnt]; len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz); if (len < 0) return len; arg->arg_signed = arg_sz < 0; if (arg_sz < 0) arg_sz = -arg_sz; switch (arg_sz) { case 1: case 2: case 4: case 8: arg->arg_bitshift = 64 - arg_sz * 8; break; default: pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", spec->arg_cnt, s, arg_sz); return -EINVAL; } s += len; spec->arg_cnt++; } return 0; } /* Architecture-specific logic for parsing USDT argument location specs */ #if defined(__x86_64__) || defined(__i386__) static int calc_pt_regs_off(const char *reg_name) { static struct { const char *names[4]; size_t pt_regs_off; } reg_map[] = { #ifdef __x86_64__ #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64) #else #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32) #endif { {"rip", "eip", "", ""}, reg_off(rip, eip) }, { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) }, { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) }, { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) }, { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) }, { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) }, { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) }, { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) }, { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) }, #undef reg_off #ifdef __x86_64__ { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) }, { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) }, { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) }, { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) }, { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) }, { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) }, { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) }, { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) }, #endif }; int i, j; for (i = 0; i < ARRAY_SIZE(reg_map); i++) { for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) { if (strcmp(reg_name, reg_map[i].names[j]) == 0) return reg_map[i].pt_regs_off; } } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) { /* Memory dereference case, e.g., -4@-20(%rbp) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) { /* Memory dereference case without offset, e.g., 8@(%rsp) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -4@%eax */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@$71 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__s390x__) /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */ static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { unsigned int reg; int len; long off; if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, ®, &len) == 3) { /* Memory dereference case, e.g., -2@-28(%r15) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; if (reg > 15) { pr_warn("usdt: unrecognized register '%%r%u'\n", reg); return -EINVAL; } arg->reg_off = offsetof(user_pt_regs, gprs[reg]); } else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, ®, &len) == 2) { /* Register read case, e.g., -8@%r0 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; if (reg > 15) { pr_warn("usdt: unrecognized register '%%r%u'\n", reg); return -EINVAL; } arg->reg_off = offsetof(user_pt_regs, gprs[reg]); } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@71 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__aarch64__) static int calc_pt_regs_off(const char *reg_name) { int reg_num; if (sscanf(reg_name, "x%d", ®_num) == 1) { if (reg_num >= 0 && reg_num < 31) return offsetof(struct user_pt_regs, regs[reg_num]); } else if (strcmp(reg_name, "sp") == 0) { return offsetof(struct user_pt_regs, sp); } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) { /* Memory dereference case, e.g., -4@[sp, 96] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { /* Memory dereference case, e.g., -4@[sp] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@5 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -8@x4 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__riscv) static int calc_pt_regs_off(const char *reg_name) { static struct { const char *name; size_t pt_regs_off; } reg_map[] = { { "ra", offsetof(struct user_regs_struct, ra) }, { "sp", offsetof(struct user_regs_struct, sp) }, { "gp", offsetof(struct user_regs_struct, gp) }, { "tp", offsetof(struct user_regs_struct, tp) }, { "a0", offsetof(struct user_regs_struct, a0) }, { "a1", offsetof(struct user_regs_struct, a1) }, { "a2", offsetof(struct user_regs_struct, a2) }, { "a3", offsetof(struct user_regs_struct, a3) }, { "a4", offsetof(struct user_regs_struct, a4) }, { "a5", offsetof(struct user_regs_struct, a5) }, { "a6", offsetof(struct user_regs_struct, a6) }, { "a7", offsetof(struct user_regs_struct, a7) }, { "s0", offsetof(struct user_regs_struct, s0) }, { "s1", offsetof(struct user_regs_struct, s1) }, { "s2", offsetof(struct user_regs_struct, s2) }, { "s3", offsetof(struct user_regs_struct, s3) }, { "s4", offsetof(struct user_regs_struct, s4) }, { "s5", offsetof(struct user_regs_struct, s5) }, { "s6", offsetof(struct user_regs_struct, s6) }, { "s7", offsetof(struct user_regs_struct, s7) }, { "s8", offsetof(struct user_regs_struct, rv_s8) }, { "s9", offsetof(struct user_regs_struct, s9) }, { "s10", offsetof(struct user_regs_struct, s10) }, { "s11", offsetof(struct user_regs_struct, s11) }, { "t0", offsetof(struct user_regs_struct, t0) }, { "t1", offsetof(struct user_regs_struct, t1) }, { "t2", offsetof(struct user_regs_struct, t2) }, { "t3", offsetof(struct user_regs_struct, t3) }, { "t4", offsetof(struct user_regs_struct, t4) }, { "t5", offsetof(struct user_regs_struct, t5) }, { "t6", offsetof(struct user_regs_struct, t6) }, }; int i; for (i = 0; i < ARRAY_SIZE(reg_map); i++) { if (strcmp(reg_name, reg_map[i].name) == 0) return reg_map[i].pt_regs_off; } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) { /* Memory dereference case, e.g., -8@-88(s0) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@5 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -8@a1 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__arm__) static int calc_pt_regs_off(const char *reg_name) { static struct { const char *name; size_t pt_regs_off; } reg_map[] = { { "r0", offsetof(struct pt_regs, uregs[0]) }, { "r1", offsetof(struct pt_regs, uregs[1]) }, { "r2", offsetof(struct pt_regs, uregs[2]) }, { "r3", offsetof(struct pt_regs, uregs[3]) }, { "r4", offsetof(struct pt_regs, uregs[4]) }, { "r5", offsetof(struct pt_regs, uregs[5]) }, { "r6", offsetof(struct pt_regs, uregs[6]) }, { "r7", offsetof(struct pt_regs, uregs[7]) }, { "r8", offsetof(struct pt_regs, uregs[8]) }, { "r9", offsetof(struct pt_regs, uregs[9]) }, { "r10", offsetof(struct pt_regs, uregs[10]) }, { "fp", offsetof(struct pt_regs, uregs[11]) }, { "ip", offsetof(struct pt_regs, uregs[12]) }, { "sp", offsetof(struct pt_regs, uregs[13]) }, { "lr", offsetof(struct pt_regs, uregs[14]) }, { "pc", offsetof(struct pt_regs, uregs[15]) }, }; int i; for (i = 0; i < ARRAY_SIZE(reg_map); i++) { if (strcmp(reg_name, reg_map[i].name) == 0) return reg_map[i].pt_regs_off; } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n", arg_sz, reg_name, &off, &len) == 3) { /* Memory dereference case, e.g., -4@[fp, #96] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { /* Memory dereference case, e.g., -4@[sp] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@#5 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -8@r4 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #else static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n"); return -ENOTSUP; } #endif |