Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | // SPDX-License-Identifier: GPL-2.0-only /* tnum: tracked (or tristate) numbers * * A tnum tracks knowledge about the bits of a value. Each bit can be either * known (0 or 1), or unknown (x). Arithmetic operations on tnums will * propagate the unknown bits such that the tnum result represents all the * possible results for possible values of the operands. */ #include <linux/kernel.h> #include <linux/tnum.h> #define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m} /* A completely unknown value */ const struct tnum tnum_unknown = { .value = 0, .mask = -1 }; struct tnum tnum_const(u64 value) { return TNUM(value, 0); } struct tnum tnum_range(u64 min, u64 max) { u64 chi = min ^ max, delta; u8 bits = fls64(chi); /* special case, needed because 1ULL << 64 is undefined */ if (bits > 63) return tnum_unknown; /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7. * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return * constant min (since min == max). */ delta = (1ULL << bits) - 1; return TNUM(min & ~delta, delta); } struct tnum tnum_lshift(struct tnum a, u8 shift) { return TNUM(a.value << shift, a.mask << shift); } struct tnum tnum_rshift(struct tnum a, u8 shift) { return TNUM(a.value >> shift, a.mask >> shift); } struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness) { /* if a.value is negative, arithmetic shifting by minimum shift * will have larger negative offset compared to more shifting. * If a.value is nonnegative, arithmetic shifting by minimum shift * will have larger positive offset compare to more shifting. */ if (insn_bitness == 32) return TNUM((u32)(((s32)a.value) >> min_shift), (u32)(((s32)a.mask) >> min_shift)); else return TNUM((s64)a.value >> min_shift, (s64)a.mask >> min_shift); } struct tnum tnum_add(struct tnum a, struct tnum b) { u64 sm, sv, sigma, chi, mu; sm = a.mask + b.mask; sv = a.value + b.value; sigma = sm + sv; chi = sigma ^ sv; mu = chi | a.mask | b.mask; return TNUM(sv & ~mu, mu); } struct tnum tnum_sub(struct tnum a, struct tnum b) { u64 dv, alpha, beta, chi, mu; dv = a.value - b.value; alpha = dv + a.mask; beta = dv - b.mask; chi = alpha ^ beta; mu = chi | a.mask | b.mask; return TNUM(dv & ~mu, mu); } struct tnum tnum_and(struct tnum a, struct tnum b) { u64 alpha, beta, v; alpha = a.value | a.mask; beta = b.value | b.mask; v = a.value & b.value; return TNUM(v, alpha & beta & ~v); } struct tnum tnum_or(struct tnum a, struct tnum b) { u64 v, mu; v = a.value | b.value; mu = a.mask | b.mask; return TNUM(v, mu & ~v); } struct tnum tnum_xor(struct tnum a, struct tnum b) { u64 v, mu; v = a.value ^ b.value; mu = a.mask | b.mask; return TNUM(v & ~mu, mu); } /* Generate partial products by multiplying each bit in the multiplier (tnum a) * with the multiplicand (tnum b), and add the partial products after * appropriately bit-shifting them. Instead of directly performing tnum addition * on the generated partial products, equivalenty, decompose each partial * product into two tnums, consisting of the value-sum (acc_v) and the * mask-sum (acc_m) and then perform tnum addition on them. The following paper * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398. */ struct tnum tnum_mul(struct tnum a, struct tnum b) { u64 acc_v = a.value * b.value; struct tnum acc_m = TNUM(0, 0); while (a.value || a.mask) { /* LSB of tnum a is a certain 1 */ if (a.value & 1) acc_m = tnum_add(acc_m, TNUM(0, b.mask)); /* LSB of tnum a is uncertain */ else if (a.mask & 1) acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask)); /* Note: no case for LSB is certain 0 */ a = tnum_rshift(a, 1); b = tnum_lshift(b, 1); } return tnum_add(TNUM(acc_v, 0), acc_m); } /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has * a 'known 0' - this will return a 'known 1' for that bit. */ struct tnum tnum_intersect(struct tnum a, struct tnum b) { u64 v, mu; v = a.value | b.value; mu = a.mask & b.mask; return TNUM(v & ~mu, mu); } struct tnum tnum_cast(struct tnum a, u8 size) { a.value &= (1ULL << (size * 8)) - 1; a.mask &= (1ULL << (size * 8)) - 1; return a; } bool tnum_is_aligned(struct tnum a, u64 size) { if (!size) return true; return !((a.value | a.mask) & (size - 1)); } bool tnum_in(struct tnum a, struct tnum b) { if (b.mask & ~a.mask) return false; b.value &= ~a.mask; return a.value == b.value; } int tnum_strn(char *str, size_t size, struct tnum a) { return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask); } EXPORT_SYMBOL_GPL(tnum_strn); int tnum_sbin(char *str, size_t size, struct tnum a) { size_t n; for (n = 64; n; n--) { if (n < size) { if (a.mask & 1) str[n - 1] = 'x'; else if (a.value & 1) str[n - 1] = '1'; else str[n - 1] = '0'; } a.mask >>= 1; a.value >>= 1; } str[min(size - 1, (size_t)64)] = 0; return 64; } struct tnum tnum_subreg(struct tnum a) { return tnum_cast(a, 4); } struct tnum tnum_clear_subreg(struct tnum a) { return tnum_lshift(tnum_rshift(a, 32), 32); } struct tnum tnum_const_subreg(struct tnum a, u32 value) { return tnum_or(tnum_clear_subreg(a), tnum_const(value)); } |