Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | // SPDX-License-Identifier: GPL-2.0-only /* * POLYVAL: hash function for HCTR2. * * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi> * Copyright (c) 2009 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> * Copyright 2021 Google LLC */ /* * Code based on crypto/ghash-generic.c * * POLYVAL is a keyed hash function similar to GHASH. POLYVAL uses a different * modulus for finite field multiplication which makes hardware accelerated * implementations on little-endian machines faster. POLYVAL is used in the * kernel to implement HCTR2, but was originally specified for AES-GCM-SIV * (RFC 8452). * * For more information see: * Length-preserving encryption with HCTR2: * https://eprint.iacr.org/2021/1441.pdf * AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption: * https://datatracker.ietf.org/doc/html/rfc8452 * * Like GHASH, POLYVAL is not a cryptographic hash function and should * not be used outside of crypto modes explicitly designed to use POLYVAL. * * This implementation uses a convenient trick involving the GHASH and POLYVAL * fields. This trick allows multiplication in the POLYVAL field to be * implemented by using multiplication in the GHASH field as a subroutine. An * element of the POLYVAL field can be converted to an element of the GHASH * field by computing x*REVERSE(a), where REVERSE reverses the byte-ordering of * a. Similarly, an element of the GHASH field can be converted back to the * POLYVAL field by computing REVERSE(x^{-1}*a). For more information, see: * https://datatracker.ietf.org/doc/html/rfc8452#appendix-A * * By using this trick, we do not need to implement the POLYVAL field for the * generic implementation. * * Warning: this generic implementation is not intended to be used in practice * and is not constant time. For practical use, a hardware accelerated * implementation of POLYVAL should be used instead. * */ #include <asm/unaligned.h> #include <crypto/algapi.h> #include <crypto/gf128mul.h> #include <crypto/polyval.h> #include <crypto/internal/hash.h> #include <linux/crypto.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> struct polyval_tfm_ctx { struct gf128mul_4k *gf128; }; struct polyval_desc_ctx { union { u8 buffer[POLYVAL_BLOCK_SIZE]; be128 buffer128; }; u32 bytes; }; static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE], const u8 src[POLYVAL_BLOCK_SIZE]) { u64 a = get_unaligned((const u64 *)&src[0]); u64 b = get_unaligned((const u64 *)&src[8]); put_unaligned(swab64(a), (u64 *)&dst[8]); put_unaligned(swab64(b), (u64 *)&dst[0]); } /* * Performs multiplication in the POLYVAL field using the GHASH field as a * subroutine. This function is used as a fallback for hardware accelerated * implementations when simd registers are unavailable. * * Note: This function is not used for polyval-generic, instead we use the 4k * lookup table implementation for finite field multiplication. */ void polyval_mul_non4k(u8 *op1, const u8 *op2) { be128 a, b; // Assume one argument is in Montgomery form and one is not. copy_and_reverse((u8 *)&a, op1); copy_and_reverse((u8 *)&b, op2); gf128mul_x_lle(&a, &a); gf128mul_lle(&a, &b); copy_and_reverse(op1, (u8 *)&a); } EXPORT_SYMBOL_GPL(polyval_mul_non4k); /* * Perform a POLYVAL update using non4k multiplication. This function is used * as a fallback for hardware accelerated implementations when simd registers * are unavailable. * * Note: This function is not used for polyval-generic, instead we use the 4k * lookup table implementation of finite field multiplication. */ void polyval_update_non4k(const u8 *key, const u8 *in, size_t nblocks, u8 *accumulator) { while (nblocks--) { crypto_xor(accumulator, in, POLYVAL_BLOCK_SIZE); polyval_mul_non4k(accumulator, key); in += POLYVAL_BLOCK_SIZE; } } EXPORT_SYMBOL_GPL(polyval_update_non4k); static int polyval_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct polyval_tfm_ctx *ctx = crypto_shash_ctx(tfm); be128 k; if (keylen != POLYVAL_BLOCK_SIZE) return -EINVAL; gf128mul_free_4k(ctx->gf128); BUILD_BUG_ON(sizeof(k) != POLYVAL_BLOCK_SIZE); copy_and_reverse((u8 *)&k, key); gf128mul_x_lle(&k, &k); ctx->gf128 = gf128mul_init_4k_lle(&k); memzero_explicit(&k, POLYVAL_BLOCK_SIZE); if (!ctx->gf128) return -ENOMEM; return 0; } static int polyval_init(struct shash_desc *desc) { struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); memset(dctx, 0, sizeof(*dctx)); return 0; } static int polyval_update(struct shash_desc *desc, const u8 *src, unsigned int srclen) { struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); u8 *pos; u8 tmp[POLYVAL_BLOCK_SIZE]; int n; if (dctx->bytes) { n = min(srclen, dctx->bytes); pos = dctx->buffer + dctx->bytes - 1; dctx->bytes -= n; srclen -= n; while (n--) *pos-- ^= *src++; if (!dctx->bytes) gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); } while (srclen >= POLYVAL_BLOCK_SIZE) { copy_and_reverse(tmp, src); crypto_xor(dctx->buffer, tmp, POLYVAL_BLOCK_SIZE); gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); src += POLYVAL_BLOCK_SIZE; srclen -= POLYVAL_BLOCK_SIZE; } if (srclen) { dctx->bytes = POLYVAL_BLOCK_SIZE - srclen; pos = dctx->buffer + POLYVAL_BLOCK_SIZE - 1; while (srclen--) *pos-- ^= *src++; } return 0; } static int polyval_final(struct shash_desc *desc, u8 *dst) { struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); if (dctx->bytes) gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); copy_and_reverse(dst, dctx->buffer); return 0; } static void polyval_exit_tfm(struct crypto_tfm *tfm) { struct polyval_tfm_ctx *ctx = crypto_tfm_ctx(tfm); gf128mul_free_4k(ctx->gf128); } static struct shash_alg polyval_alg = { .digestsize = POLYVAL_DIGEST_SIZE, .init = polyval_init, .update = polyval_update, .final = polyval_final, .setkey = polyval_setkey, .descsize = sizeof(struct polyval_desc_ctx), .base = { .cra_name = "polyval", .cra_driver_name = "polyval-generic", .cra_priority = 100, .cra_blocksize = POLYVAL_BLOCK_SIZE, .cra_ctxsize = sizeof(struct polyval_tfm_ctx), .cra_module = THIS_MODULE, .cra_exit = polyval_exit_tfm, }, }; static int __init polyval_mod_init(void) { return crypto_register_shash(&polyval_alg); } static void __exit polyval_mod_exit(void) { crypto_unregister_shash(&polyval_alg); } subsys_initcall(polyval_mod_init); module_exit(polyval_mod_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("POLYVAL hash function"); MODULE_ALIAS_CRYPTO("polyval"); MODULE_ALIAS_CRYPTO("polyval-generic"); |