Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | // SPDX-License-Identifier: GPL-2.0 /* * Author: Huacai Chen <chenhuacai@loongson.cn> * Copyright (C) 2020-2022 Loongson Technology Corporation Limited * * Derived from MIPS: * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others. * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2004 Thiemo Seufer * Copyright (C) 2013 Imagination Technologies Ltd. */ #include <linux/cpu.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/hw_breakpoint.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/export.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/personality.h> #include <linux/sys.h> #include <linux/completion.h> #include <linux/kallsyms.h> #include <linux/random.h> #include <linux/prctl.h> #include <linux/nmi.h> #include <asm/asm.h> #include <asm/bootinfo.h> #include <asm/cpu.h> #include <asm/elf.h> #include <asm/fpu.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/loongarch.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/reg.h> #include <asm/unwind.h> #include <asm/vdso.h> #ifdef CONFIG_STACKPROTECTOR #include <linux/stackprotector.h> unsigned long __stack_chk_guard __read_mostly; EXPORT_SYMBOL(__stack_chk_guard); #endif /* * Idle related variables and functions */ unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; EXPORT_SYMBOL(boot_option_idle_override); asmlinkage void ret_from_fork(void); asmlinkage void ret_from_kernel_thread(void); void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp) { unsigned long crmd; unsigned long prmd; unsigned long euen; /* New thread loses kernel privileges. */ crmd = regs->csr_crmd & ~(PLV_MASK); crmd |= PLV_USER; regs->csr_crmd = crmd; prmd = regs->csr_prmd & ~(PLV_MASK); prmd |= PLV_USER; regs->csr_prmd = prmd; euen = regs->csr_euen & ~(CSR_EUEN_FPEN); regs->csr_euen = euen; lose_fpu(0); clear_thread_flag(TIF_LSX_CTX_LIVE); clear_thread_flag(TIF_LASX_CTX_LIVE); clear_used_math(); regs->csr_era = pc; regs->regs[3] = sp; } void flush_thread(void) { flush_ptrace_hw_breakpoint(current); } void exit_thread(struct task_struct *tsk) { } int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { /* * Save any process state which is live in hardware registers to the * parent context prior to duplication. This prevents the new child * state becoming stale if the parent is preempted before copy_thread() * gets a chance to save the parent's live hardware registers to the * child context. */ preempt_disable(); if (is_fpu_owner()) { if (is_lasx_enabled()) save_lasx(current); else if (is_lsx_enabled()) save_lsx(current); else save_fp(current); } preempt_enable(); if (used_math()) memcpy(dst, src, sizeof(struct task_struct)); else memcpy(dst, src, offsetof(struct task_struct, thread.fpu.fpr)); return 0; } /* * Copy architecture-specific thread state */ int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) { unsigned long childksp; unsigned long tls = args->tls; unsigned long usp = args->stack; unsigned long clone_flags = args->flags; struct pt_regs *childregs, *regs = current_pt_regs(); childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE; /* set up new TSS. */ childregs = (struct pt_regs *) childksp - 1; /* Put the stack after the struct pt_regs. */ childksp = (unsigned long) childregs; p->thread.sched_cfa = 0; p->thread.csr_euen = 0; p->thread.csr_crmd = csr_read32(LOONGARCH_CSR_CRMD); p->thread.csr_prmd = csr_read32(LOONGARCH_CSR_PRMD); p->thread.csr_ecfg = csr_read32(LOONGARCH_CSR_ECFG); if (unlikely(args->fn)) { /* kernel thread */ p->thread.reg03 = childksp; p->thread.reg23 = (unsigned long)args->fn; p->thread.reg24 = (unsigned long)args->fn_arg; p->thread.reg01 = (unsigned long)ret_from_kernel_thread; p->thread.sched_ra = (unsigned long)ret_from_kernel_thread; memset(childregs, 0, sizeof(struct pt_regs)); childregs->csr_euen = p->thread.csr_euen; childregs->csr_crmd = p->thread.csr_crmd; childregs->csr_prmd = p->thread.csr_prmd; childregs->csr_ecfg = p->thread.csr_ecfg; goto out; } /* user thread */ *childregs = *regs; childregs->regs[4] = 0; /* Child gets zero as return value */ if (usp) childregs->regs[3] = usp; p->thread.reg03 = (unsigned long) childregs; p->thread.reg01 = (unsigned long) ret_from_fork; p->thread.sched_ra = (unsigned long) ret_from_fork; /* * New tasks lose permission to use the fpu. This accelerates context * switching for most programs since they don't use the fpu. */ childregs->csr_euen = 0; if (clone_flags & CLONE_SETTLS) childregs->regs[2] = tls; out: ptrace_hw_copy_thread(p); clear_tsk_thread_flag(p, TIF_USEDFPU); clear_tsk_thread_flag(p, TIF_USEDSIMD); clear_tsk_thread_flag(p, TIF_LSX_CTX_LIVE); clear_tsk_thread_flag(p, TIF_LASX_CTX_LIVE); return 0; } unsigned long __get_wchan(struct task_struct *task) { unsigned long pc = 0; struct unwind_state state; if (!try_get_task_stack(task)) return 0; for (unwind_start(&state, task, NULL); !unwind_done(&state); unwind_next_frame(&state)) { pc = unwind_get_return_address(&state); if (!pc) break; if (in_sched_functions(pc)) continue; break; } put_task_stack(task); return pc; } bool in_irq_stack(unsigned long stack, struct stack_info *info) { unsigned long nextsp; unsigned long begin = (unsigned long)this_cpu_read(irq_stack); unsigned long end = begin + IRQ_STACK_START; if (stack < begin || stack >= end) return false; nextsp = *(unsigned long *)end; if (nextsp & (SZREG - 1)) return false; info->begin = begin; info->end = end; info->next_sp = nextsp; info->type = STACK_TYPE_IRQ; return true; } bool in_task_stack(unsigned long stack, struct task_struct *task, struct stack_info *info) { unsigned long begin = (unsigned long)task_stack_page(task); unsigned long end = begin + THREAD_SIZE; if (stack < begin || stack >= end) return false; info->begin = begin; info->end = end; info->next_sp = 0; info->type = STACK_TYPE_TASK; return true; } int get_stack_info(unsigned long stack, struct task_struct *task, struct stack_info *info) { task = task ? : current; if (!stack || stack & (SZREG - 1)) goto unknown; if (in_task_stack(stack, task, info)) return 0; if (task != current) goto unknown; if (in_irq_stack(stack, info)) return 0; unknown: info->type = STACK_TYPE_UNKNOWN; return -EINVAL; } unsigned long stack_top(void) { unsigned long top = TASK_SIZE & PAGE_MASK; /* Space for the VDSO & data page */ top -= PAGE_ALIGN(current->thread.vdso->size); top -= VVAR_SIZE; /* Space to randomize the VDSO base */ if (current->flags & PF_RANDOMIZE) top -= VDSO_RANDOMIZE_SIZE; return top; } /* * Don't forget that the stack pointer must be aligned on a 8 bytes * boundary for 32-bits ABI and 16 bytes for 64-bits ABI. */ unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_u32_below(PAGE_SIZE); return sp & STACK_ALIGN; } static DEFINE_PER_CPU(call_single_data_t, backtrace_csd); static struct cpumask backtrace_csd_busy; static void handle_backtrace(void *info) { nmi_cpu_backtrace(get_irq_regs()); cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy); } static void raise_backtrace(cpumask_t *mask) { call_single_data_t *csd; int cpu; for_each_cpu(cpu, mask) { /* * If we previously sent an IPI to the target CPU & it hasn't * cleared its bit in the busy cpumask then it didn't handle * our previous IPI & it's not safe for us to reuse the * call_single_data_t. */ if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) { pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n", cpu); continue; } csd = &per_cpu(backtrace_csd, cpu); csd->func = handle_backtrace; smp_call_function_single_async(cpu, csd); } } void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) { nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace); } #ifdef CONFIG_64BIT void loongarch_dump_regs64(u64 *uregs, const struct pt_regs *regs) { unsigned int i; for (i = LOONGARCH_EF_R1; i <= LOONGARCH_EF_R31; i++) { uregs[i] = regs->regs[i - LOONGARCH_EF_R0]; } uregs[LOONGARCH_EF_ORIG_A0] = regs->orig_a0; uregs[LOONGARCH_EF_CSR_ERA] = regs->csr_era; uregs[LOONGARCH_EF_CSR_BADV] = regs->csr_badvaddr; uregs[LOONGARCH_EF_CSR_CRMD] = regs->csr_crmd; uregs[LOONGARCH_EF_CSR_PRMD] = regs->csr_prmd; uregs[LOONGARCH_EF_CSR_EUEN] = regs->csr_euen; uregs[LOONGARCH_EF_CSR_ECFG] = regs->csr_ecfg; uregs[LOONGARCH_EF_CSR_ESTAT] = regs->csr_estat; } #endif /* CONFIG_64BIT */ |