Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 | // SPDX-License-Identifier: GPL-2.0-only /* * (C) 2003 Red Hat, Inc. * (C) 2004 Dan Brown <dan_brown@ieee.org> * (C) 2004 Kalev Lember <kalev@smartlink.ee> * * Author: David Woodhouse <dwmw2@infradead.org> * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> * * Error correction code lifted from the old docecc code * Author: Fabrice Bellard (fabrice.bellard@netgem.com) * Copyright (C) 2000 Netgem S.A. * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> * * Interface to generic NAND code for M-Systems DiskOnChip devices */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/rslib.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/doc2000.h> #include <linux/mtd/partitions.h> #include <linux/mtd/inftl.h> #include <linux/module.h> /* Where to look for the devices? */ #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 #endif static unsigned long doc_locations[] __initdata = { #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, #else 0xc8000, 0xca000, 0xcc000, 0xce000, 0xd0000, 0xd2000, 0xd4000, 0xd6000, 0xd8000, 0xda000, 0xdc000, 0xde000, 0xe0000, 0xe2000, 0xe4000, 0xe6000, 0xe8000, 0xea000, 0xec000, 0xee000, #endif #endif 0xffffffff }; static struct mtd_info *doclist = NULL; struct doc_priv { struct nand_controller base; void __iomem *virtadr; unsigned long physadr; u_char ChipID; u_char CDSNControl; int chips_per_floor; /* The number of chips detected on each floor */ int curfloor; int curchip; int mh0_page; int mh1_page; struct rs_control *rs_decoder; struct mtd_info *nextdoc; bool supports_32b_reads; /* Handle the last stage of initialization (BBT scan, partitioning) */ int (*late_init)(struct mtd_info *mtd); }; /* This is the ecc value computed by the HW ecc generator upon writing an empty page, one with all 0xff for data. */ static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; #define INFTL_BBT_RESERVED_BLOCKS 4 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) static int debug = 0; module_param(debug, int, 0); static int try_dword = 1; module_param(try_dword, int, 0); static int no_ecc_failures = 0; module_param(no_ecc_failures, int, 0); static int no_autopart = 0; module_param(no_autopart, int, 0); static int show_firmware_partition = 0; module_param(show_firmware_partition, int, 0); #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE static int inftl_bbt_write = 1; #else static int inftl_bbt_write = 0; #endif module_param(inftl_bbt_write, int, 0); static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; module_param(doc_config_location, ulong, 0); MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); /* Sector size for HW ECC */ #define SECTOR_SIZE 512 /* The sector bytes are packed into NB_DATA 10 bit words */ #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) /* Number of roots */ #define NROOTS 4 /* First consective root */ #define FCR 510 /* Number of symbols */ #define NN 1023 /* * The HW decoder in the DoC ASIC's provides us a error syndrome, * which we must convert to a standard syndrome usable by the generic * Reed-Solomon library code. * * Fabrice Bellard figured this out in the old docecc code. I added * some comments, improved a minor bit and converted it to make use * of the generic Reed-Solomon library. tglx */ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) { int i, j, nerr, errpos[8]; uint8_t parity; uint16_t ds[4], s[5], tmp, errval[8], syn[4]; struct rs_codec *cd = rs->codec; memset(syn, 0, sizeof(syn)); /* Convert the ecc bytes into words */ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); parity = ecc[1]; /* Initialize the syndrome buffer */ for (i = 0; i < NROOTS; i++) s[i] = ds[0]; /* * Evaluate * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] * where x = alpha^(FCR + i) */ for (j = 1; j < NROOTS; j++) { if (ds[j] == 0) continue; tmp = cd->index_of[ds[j]]; for (i = 0; i < NROOTS; i++) s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)]; } /* Calc syn[i] = s[i] / alpha^(v + i) */ for (i = 0; i < NROOTS; i++) { if (s[i]) syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i)); } /* Call the decoder library */ nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); /* Incorrectable errors ? */ if (nerr < 0) return nerr; /* * Correct the errors. The bitpositions are a bit of magic, * but they are given by the design of the de/encoder circuit * in the DoC ASIC's. */ for (i = 0; i < nerr; i++) { int index, bitpos, pos = 1015 - errpos[i]; uint8_t val; if (pos >= NB_DATA && pos < 1019) continue; if (pos < NB_DATA) { /* extract bit position (MSB first) */ pos = 10 * (NB_DATA - 1 - pos) - 6; /* now correct the following 10 bits. At most two bytes can be modified since pos is even */ index = (pos >> 3) ^ 1; bitpos = pos & 7; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = (uint8_t) (errval[i] >> (2 + bitpos)); parity ^= val; if (index < SECTOR_SIZE) data[index] ^= val; } index = ((pos >> 3) + 1) ^ 1; bitpos = (bitpos + 10) & 7; if (bitpos == 0) bitpos = 8; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = (uint8_t) (errval[i] << (8 - bitpos)); parity ^= val; if (index < SECTOR_SIZE) data[index] ^= val; } } } /* If the parity is wrong, no rescue possible */ return parity ? -EBADMSG : nerr; } static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) { volatile char __always_unused dummy; int i; for (i = 0; i < cycles; i++) { if (DoC_is_Millennium(doc)) dummy = ReadDOC(doc->virtadr, NOP); else if (DoC_is_MillenniumPlus(doc)) dummy = ReadDOC(doc->virtadr, Mplus_NOP); else dummy = ReadDOC(doc->virtadr, DOCStatus); } } #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ static int _DoC_WaitReady(struct doc_priv *doc) { void __iomem *docptr = doc->virtadr; unsigned long timeo = jiffies + (HZ * 10); if (debug) printk("_DoC_WaitReady...\n"); /* Out-of-line routine to wait for chip response */ if (DoC_is_MillenniumPlus(doc)) { while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { if (time_after(jiffies, timeo)) { printk("_DoC_WaitReady timed out.\n"); return -EIO; } udelay(1); cond_resched(); } } else { while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { if (time_after(jiffies, timeo)) { printk("_DoC_WaitReady timed out.\n"); return -EIO; } udelay(1); cond_resched(); } } return 0; } static inline int DoC_WaitReady(struct doc_priv *doc) { void __iomem *docptr = doc->virtadr; int ret = 0; if (DoC_is_MillenniumPlus(doc)) { DoC_Delay(doc, 4); if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(doc); } else { DoC_Delay(doc, 4); if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(doc); DoC_Delay(doc, 2); } if (debug) printk("DoC_WaitReady OK\n"); return ret; } static void doc2000_write_byte(struct nand_chip *this, u_char datum) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; if (debug) printk("write_byte %02x\n", datum); WriteDOC(datum, docptr, CDSNSlowIO); WriteDOC(datum, docptr, 2k_CDSN_IO); } static void doc2000_writebuf(struct nand_chip *this, const u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; if (debug) printk("writebuf of %d bytes: ", len); for (i = 0; i < len; i++) { WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); if (debug && i < 16) printk("%02x ", buf[i]); } if (debug) printk("\n"); } static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; u32 *buf32 = (u32 *)buf; int i; if (debug) printk("readbuf of %d bytes: ", len); if (!doc->supports_32b_reads || ((((unsigned long)buf) | len) & 3)) { for (i = 0; i < len; i++) buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); } else { for (i = 0; i < len / 4; i++) buf32[i] = readl(docptr + DoC_2k_CDSN_IO + i); } } /* * We need our own readid() here because it's called before the NAND chip * has been initialized, and calling nand_op_readid() would lead to a NULL * pointer exception when dereferencing the NAND timings. */ static void doc200x_readid(struct nand_chip *this, unsigned int cs, u8 *id) { u8 addr = 0; struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_READID, 0), NAND_OP_ADDR(1, &addr, 50), NAND_OP_8BIT_DATA_IN(2, id, 0), }; struct nand_operation op = NAND_OPERATION(cs, instrs); if (!id) op.ninstrs--; this->controller->ops->exec_op(this, &op, false); } static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); uint16_t ret; u8 id[2]; doc200x_readid(this, nr, id); ret = ((u16)id[0] << 8) | id[1]; if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { /* First chip probe. See if we get same results by 32-bit access */ union { uint32_t dword; uint8_t byte[4]; } ident; void __iomem *docptr = doc->virtadr; doc200x_readid(this, nr, NULL); ident.dword = readl(docptr + DoC_2k_CDSN_IO); if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { pr_info("DiskOnChip 2000 responds to DWORD access\n"); doc->supports_32b_reads = true; } } return ret; } static void __init doc2000_count_chips(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); uint16_t mfrid; int i; /* Max 4 chips per floor on DiskOnChip 2000 */ doc->chips_per_floor = 4; /* Find out what the first chip is */ mfrid = doc200x_ident_chip(mtd, 0); /* Find how many chips in each floor. */ for (i = 1; i < 4; i++) { if (doc200x_ident_chip(mtd, i) != mfrid) break; } doc->chips_per_floor = i; pr_debug("Detected %d chips per floor.\n", i); } static void doc2001_write_byte(struct nand_chip *this, u_char datum) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; WriteDOC(datum, docptr, CDSNSlowIO); WriteDOC(datum, docptr, Mil_CDSN_IO); WriteDOC(datum, docptr, WritePipeTerm); } static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; for (i = 0; i < len; i++) WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); /* Terminate write pipeline */ WriteDOC(0x00, docptr, WritePipeTerm); } static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; /* Start read pipeline */ ReadDOC(docptr, ReadPipeInit); for (i = 0; i < len - 1; i++) buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); /* Terminate read pipeline */ buf[i] = ReadDOC(docptr, LastDataRead); } static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; if (debug) printk("writebuf of %d bytes: ", len); for (i = 0; i < len; i++) { WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); if (debug && i < 16) printk("%02x ", buf[i]); } if (debug) printk("\n"); } static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; if (debug) printk("readbuf of %d bytes: ", len); /* Start read pipeline */ ReadDOC(docptr, Mplus_ReadPipeInit); ReadDOC(docptr, Mplus_ReadPipeInit); for (i = 0; i < len - 2; i++) { buf[i] = ReadDOC(docptr, Mil_CDSN_IO); if (debug && i < 16) printk("%02x ", buf[i]); } /* Terminate read pipeline */ if (len >= 2) { buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); if (debug && i < 16) printk("%02x ", buf[len - 2]); } buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); if (debug && i < 16) printk("%02x ", buf[len - 1]); if (debug) printk("\n"); } static void doc200x_write_control(struct doc_priv *doc, u8 value) { WriteDOC(value, doc->virtadr, CDSNControl); /* 11.4.3 -- 4 NOPs after CSDNControl write */ DoC_Delay(doc, 4); } static void doc200x_exec_instr(struct nand_chip *this, const struct nand_op_instr *instr) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; switch (instr->type) { case NAND_OP_CMD_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_CLE); doc2000_write_byte(this, instr->ctx.cmd.opcode); break; case NAND_OP_ADDR_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_ALE); for (i = 0; i < instr->ctx.addr.naddrs; i++) { u8 addr = instr->ctx.addr.addrs[i]; if (DoC_is_2000(doc)) doc2000_write_byte(this, addr); else doc2001_write_byte(this, addr); } break; case NAND_OP_DATA_IN_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE); if (DoC_is_2000(doc)) doc2000_readbuf(this, instr->ctx.data.buf.in, instr->ctx.data.len); else doc2001_readbuf(this, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE); if (DoC_is_2000(doc)) doc2000_writebuf(this, instr->ctx.data.buf.out, instr->ctx.data.len); else doc2001_writebuf(this, instr->ctx.data.buf.out, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: DoC_WaitReady(doc); break; } if (instr->delay_ns) ndelay(instr->delay_ns); } static int doc200x_exec_op(struct nand_chip *this, const struct nand_operation *op, bool check_only) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; if (check_only) return true; doc->curchip = op->cs % doc->chips_per_floor; doc->curfloor = op->cs / doc->chips_per_floor; WriteDOC(doc->curfloor, doc->virtadr, FloorSelect); WriteDOC(doc->curchip, doc->virtadr, CDSNDeviceSelect); /* Assert CE pin */ doc200x_write_control(doc, CDSN_CTRL_CE); for (i = 0; i < op->ninstrs; i++) doc200x_exec_instr(this, &op->instrs[i]); /* De-assert CE pin */ doc200x_write_control(doc, 0); return 0; } static void doc2001plus_write_pipe_term(struct doc_priv *doc) { WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm); WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm); } static void doc2001plus_exec_instr(struct nand_chip *this, const struct nand_op_instr *instr) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; switch (instr->type) { case NAND_OP_CMD_INSTR: WriteDOC(instr->ctx.cmd.opcode, doc->virtadr, Mplus_FlashCmd); doc2001plus_write_pipe_term(doc); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) { u8 addr = instr->ctx.addr.addrs[i]; WriteDOC(addr, doc->virtadr, Mplus_FlashAddress); } doc2001plus_write_pipe_term(doc); /* deassert ALE */ WriteDOC(0, doc->virtadr, Mplus_FlashControl); break; case NAND_OP_DATA_IN_INSTR: doc2001plus_readbuf(this, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: doc2001plus_writebuf(this, instr->ctx.data.buf.out, instr->ctx.data.len); doc2001plus_write_pipe_term(doc); break; case NAND_OP_WAITRDY_INSTR: DoC_WaitReady(doc); break; } if (instr->delay_ns) ndelay(instr->delay_ns); } static int doc2001plus_exec_op(struct nand_chip *this, const struct nand_operation *op, bool check_only) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; if (check_only) return true; doc->curchip = op->cs % doc->chips_per_floor; doc->curfloor = op->cs / doc->chips_per_floor; /* Assert ChipEnable and deassert WriteProtect */ WriteDOC(DOC_FLASH_CE, doc->virtadr, Mplus_FlashSelect); for (i = 0; i < op->ninstrs; i++) doc2001plus_exec_instr(this, &op->instrs[i]); /* De-assert ChipEnable */ WriteDOC(0, doc->virtadr, Mplus_FlashSelect); return 0; } static void doc200x_enable_hwecc(struct nand_chip *this, int mode) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; /* Prime the ECC engine */ switch (mode) { case NAND_ECC_READ: WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN, docptr, ECCConf); break; case NAND_ECC_WRITE: WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); break; } } static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; /* Prime the ECC engine */ switch (mode) { case NAND_ECC_READ: WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); break; case NAND_ECC_WRITE: WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); break; } } /* This code is only called on write */ static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat, unsigned char *ecc_code) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; int __always_unused emptymatch = 1; /* flush the pipeline */ if (DoC_is_2000(doc)) { WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(doc->CDSNControl, docptr, CDSNControl); } else if (DoC_is_MillenniumPlus(doc)) { WriteDOC(0, docptr, Mplus_NOP); WriteDOC(0, docptr, Mplus_NOP); WriteDOC(0, docptr, Mplus_NOP); } else { WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); } for (i = 0; i < 6; i++) { if (DoC_is_MillenniumPlus(doc)) ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); else ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); if (ecc_code[i] != empty_write_ecc[i]) emptymatch = 0; } if (DoC_is_MillenniumPlus(doc)) WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); #if 0 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ if (emptymatch) { /* Note: this somewhat expensive test should not be triggered often. It could be optimized away by examining the data in the writebuf routine, and remembering the result. */ for (i = 0; i < 512; i++) { if (dat[i] == 0xff) continue; emptymatch = 0; break; } } /* If emptymatch still =1, we do have an all-0xff data buffer. Return all-0xff ecc value instead of the computed one, so it'll look just like a freshly-erased page. */ if (emptymatch) memset(ecc_code, 0xff, 6); #endif return 0; } static int doc200x_correct_data(struct nand_chip *this, u_char *dat, u_char *read_ecc, u_char *isnull) { int i, ret = 0; struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; uint8_t calc_ecc[6]; volatile u_char dummy; /* flush the pipeline */ if (DoC_is_2000(doc)) { dummy = ReadDOC(docptr, 2k_ECCStatus); dummy = ReadDOC(docptr, 2k_ECCStatus); dummy = ReadDOC(docptr, 2k_ECCStatus); } else if (DoC_is_MillenniumPlus(doc)) { dummy = ReadDOC(docptr, Mplus_ECCConf); dummy = ReadDOC(docptr, Mplus_ECCConf); dummy = ReadDOC(docptr, Mplus_ECCConf); } else { dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); } /* Error occurred ? */ if (dummy & 0x80) { for (i = 0; i < 6; i++) { if (DoC_is_MillenniumPlus(doc)) calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); else calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); } ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc); if (ret > 0) pr_err("doc200x_correct_data corrected %d errors\n", ret); } if (DoC_is_MillenniumPlus(doc)) WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); if (no_ecc_failures && mtd_is_eccerr(ret)) { pr_err("suppressing ECC failure\n"); ret = 0; } return ret; } //u_char mydatabuf[528]; static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section) return -ERANGE; oobregion->offset = 0; oobregion->length = 6; return 0; } static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 1) return -ERANGE; /* * The strange out-of-order free bytes definition is a (possibly * unneeded) attempt to retain compatibility. It used to read: * .oobfree = { {8, 8} } * Since that leaves two bytes unusable, it was changed. But the * following scheme might affect existing jffs2 installs by moving the * cleanmarker: * .oobfree = { {6, 10} } * jffs2 seems to handle the above gracefully, but the current scheme * seems safer. The only problem with it is that any code retrieving * free bytes position must be able to handle out-of-order segments. */ if (!section) { oobregion->offset = 8; oobregion->length = 8; } else { oobregion->offset = 6; oobregion->length = 2; } return 0; } static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { .ecc = doc200x_ooblayout_ecc, .free = doc200x_ooblayout_free, }; /* Find the (I)NFTL Media Header, and optionally also the mirror media header. On successful return, buf will contain a copy of the media header for further processing. id is the string to scan for, and will presumably be either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media header. The page #s of the found media headers are placed in mh0_page and mh1_page in the DOC private structure. */ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); unsigned offs; int ret; size_t retlen; for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) continue; if (ret) { pr_warn("ECC error scanning DOC at 0x%x\n", offs); } if (memcmp(buf, id, 6)) continue; pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs); if (doc->mh0_page == -1) { doc->mh0_page = offs >> this->page_shift; if (!findmirror) return 1; continue; } doc->mh1_page = offs >> this->page_shift; return 2; } if (doc->mh0_page == -1) { pr_warn("DiskOnChip %s Media Header not found.\n", id); return 0; } /* Only one mediaheader was found. We want buf to contain a mediaheader on return, so we'll have to re-read the one we found. */ offs = doc->mh0_page << this->page_shift; ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) { /* Insanity. Give up. */ pr_err("Read DiskOnChip Media Header once, but can't reread it???\n"); return 0; } return 1; } static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); struct nand_memory_organization *memorg; int ret = 0; u_char *buf; struct NFTLMediaHeader *mh; const unsigned psize = 1 << this->page_shift; int numparts = 0; unsigned blocks, maxblocks; int offs, numheaders; memorg = nanddev_get_memorg(&this->base); buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { return 0; } if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) goto out; mh = (struct NFTLMediaHeader *)buf; le16_to_cpus(&mh->NumEraseUnits); le16_to_cpus(&mh->FirstPhysicalEUN); le32_to_cpus(&mh->FormattedSize); pr_info(" DataOrgID = %s\n" " NumEraseUnits = %d\n" " FirstPhysicalEUN = %d\n" " FormattedSize = %d\n" " UnitSizeFactor = %d\n", mh->DataOrgID, mh->NumEraseUnits, mh->FirstPhysicalEUN, mh->FormattedSize, mh->UnitSizeFactor); blocks = mtd->size >> this->phys_erase_shift; maxblocks = min(32768U, mtd->erasesize - psize); if (mh->UnitSizeFactor == 0x00) { /* Auto-determine UnitSizeFactor. The constraints are: - There can be at most 32768 virtual blocks. - There can be at most (virtual block size - page size) virtual blocks (because MediaHeader+BBT must fit in 1). */ mh->UnitSizeFactor = 0xff; while (blocks > maxblocks) { blocks >>= 1; maxblocks = min(32768U, (maxblocks << 1) + psize); mh->UnitSizeFactor--; } pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); } /* NOTE: The lines below modify internal variables of the NAND and MTD layers; variables with have already been configured by nand_scan. Unfortunately, we didn't know before this point what these values should be. Thus, this code is somewhat dependent on the exact implementation of the NAND layer. */ if (mh->UnitSizeFactor != 0xff) { this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); memorg->pages_per_eraseblock <<= (0xff - mh->UnitSizeFactor); mtd->erasesize <<= (0xff - mh->UnitSizeFactor); pr_info("Setting virtual erase size to %d\n", mtd->erasesize); blocks = mtd->size >> this->bbt_erase_shift; maxblocks = min(32768U, mtd->erasesize - psize); } if (blocks > maxblocks) { pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); goto out; } /* Skip past the media headers. */ offs = max(doc->mh0_page, doc->mh1_page); offs <<= this->page_shift; offs += mtd->erasesize; if (show_firmware_partition == 1) { parts[0].name = " DiskOnChip Firmware / Media Header partition"; parts[0].offset = 0; parts[0].size = offs; numparts = 1; } parts[numparts].name = " DiskOnChip BDTL partition"; parts[numparts].offset = offs; parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; offs += parts[numparts].size; numparts++; if (offs < mtd->size) { parts[numparts].name = " DiskOnChip Remainder partition"; parts[numparts].offset = offs; parts[numparts].size = mtd->size - offs; numparts++; } ret = numparts; out: kfree(buf); return ret; } /* This is a stripped-down copy of the code in inftlmount.c */ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); int ret = 0; u_char *buf; struct INFTLMediaHeader *mh; struct INFTLPartition *ip; int numparts = 0; int blocks; int vshift, lastvunit = 0; int i; int end = mtd->size; if (inftl_bbt_write) end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { return 0; } if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out; doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); mh = (struct INFTLMediaHeader *)buf; le32_to_cpus(&mh->NoOfBootImageBlocks); le32_to_cpus(&mh->NoOfBinaryPartitions); le32_to_cpus(&mh->NoOfBDTLPartitions); le32_to_cpus(&mh->BlockMultiplierBits); le32_to_cpus(&mh->FormatFlags); le32_to_cpus(&mh->PercentUsed); pr_info(" bootRecordID = %s\n" " NoOfBootImageBlocks = %d\n" " NoOfBinaryPartitions = %d\n" " NoOfBDTLPartitions = %d\n" " BlockMultiplierBits = %d\n" " FormatFlgs = %d\n" " OsakVersion = %d.%d.%d.%d\n" " PercentUsed = %d\n", mh->bootRecordID, mh->NoOfBootImageBlocks, mh->NoOfBinaryPartitions, mh->NoOfBDTLPartitions, mh->BlockMultiplierBits, mh->FormatFlags, ((unsigned char *) &mh->OsakVersion)[0] & 0xf, ((unsigned char *) &mh->OsakVersion)[1] & 0xf, ((unsigned char *) &mh->OsakVersion)[2] & 0xf, ((unsigned char *) &mh->OsakVersion)[3] & 0xf, mh->PercentUsed); vshift = this->phys_erase_shift + mh->BlockMultiplierBits; blocks = mtd->size >> vshift; if (blocks > 32768) { pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); goto out; } blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); if (inftl_bbt_write && (blocks > mtd->erasesize)) { pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); goto out; } /* Scan the partitions */ for (i = 0; (i < 4); i++) { ip = &(mh->Partitions[i]); le32_to_cpus(&ip->virtualUnits); le32_to_cpus(&ip->firstUnit); le32_to_cpus(&ip->lastUnit); le32_to_cpus(&ip->flags); le32_to_cpus(&ip->spareUnits); le32_to_cpus(&ip->Reserved0); pr_info(" PARTITION[%d] ->\n" " virtualUnits = %d\n" " firstUnit = %d\n" " lastUnit = %d\n" " flags = 0x%x\n" " spareUnits = %d\n", i, ip->virtualUnits, ip->firstUnit, ip->lastUnit, ip->flags, ip->spareUnits); if ((show_firmware_partition == 1) && (i == 0) && (ip->firstUnit > 0)) { parts[0].name = " DiskOnChip IPL / Media Header partition"; parts[0].offset = 0; parts[0].size = mtd->erasesize * ip->firstUnit; numparts = 1; } if (ip->flags & INFTL_BINARY) parts[numparts].name = " DiskOnChip BDK partition"; else parts[numparts].name = " DiskOnChip BDTL partition"; parts[numparts].offset = ip->firstUnit << vshift; parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; numparts++; if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit; if (ip->flags & INFTL_LAST) break; } lastvunit++; if ((lastvunit << vshift) < end) { parts[numparts].name = " DiskOnChip Remainder partition"; parts[numparts].offset = lastvunit << vshift; parts[numparts].size = end - parts[numparts].offset; numparts++; } ret = numparts; out: kfree(buf); return ret; } static int __init nftl_scan_bbt(struct mtd_info *mtd) { int ret, numparts; struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); struct mtd_partition parts[2]; memset((char *)parts, 0, sizeof(parts)); /* On NFTL, we have to find the media headers before we can read the BBTs, since they're stored in the media header eraseblocks. */ numparts = nftl_partscan(mtd, parts); if (!numparts) return -EIO; this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | NAND_BBT_VERSION; this->bbt_td->veroffs = 7; this->bbt_td->pages[0] = doc->mh0_page + 1; if (doc->mh1_page != -1) { this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | NAND_BBT_VERSION; this->bbt_md->veroffs = 7; this->bbt_md->pages[0] = doc->mh1_page + 1; } else { this->bbt_md = NULL; } ret = nand_create_bbt(this); if (ret) return ret; return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); } static int __init inftl_scan_bbt(struct mtd_info *mtd) { int ret, numparts; struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); struct mtd_partition parts[5]; if (nanddev_ntargets(&this->base) > doc->chips_per_floor) { pr_err("Multi-floor INFTL devices not yet supported.\n"); return -EIO; } if (DoC_is_MillenniumPlus(doc)) { this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; if (inftl_bbt_write) this->bbt_td->options |= NAND_BBT_WRITE; this->bbt_td->pages[0] = 2; this->bbt_md = NULL; } else { this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; if (inftl_bbt_write) this->bbt_td->options |= NAND_BBT_WRITE; this->bbt_td->offs = 8; this->bbt_td->len = 8; this->bbt_td->veroffs = 7; this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; this->bbt_td->reserved_block_code = 0x01; this->bbt_td->pattern = "MSYS_BBT"; this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; if (inftl_bbt_write) this->bbt_md->options |= NAND_BBT_WRITE; this->bbt_md->offs = 8; this->bbt_md->len = 8; this->bbt_md->veroffs = 7; this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; this->bbt_md->reserved_block_code = 0x01; this->bbt_md->pattern = "TBB_SYSM"; } ret = nand_create_bbt(this); if (ret) return ret; memset((char *)parts, 0, sizeof(parts)); numparts = inftl_partscan(mtd, parts); /* At least for now, require the INFTL Media Header. We could probably do without it for non-INFTL use, since all it gives us is autopartitioning, but I want to give it more thought. */ if (!numparts) return -EIO; return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); } static inline int __init doc2000_init(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); doc->late_init = nftl_scan_bbt; doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; doc2000_count_chips(mtd); mtd->name = "DiskOnChip 2000 (NFTL Model)"; return (4 * doc->chips_per_floor); } static inline int __init doc2001_init(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { /* It's not a Millennium; it's one of the newer DiskOnChip 2000 units with a similar ASIC. Treat it like a Millennium, except that it can have multiple chips. */ doc2000_count_chips(mtd); mtd->name = "DiskOnChip 2000 (INFTL Model)"; doc->late_init = inftl_scan_bbt; return (4 * doc->chips_per_floor); } else { /* Bog-standard Millennium */ doc->chips_per_floor = 1; mtd->name = "DiskOnChip Millennium"; doc->late_init = nftl_scan_bbt; return 1; } } static inline int __init doc2001plus_init(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); doc->late_init = inftl_scan_bbt; this->ecc.hwctl = doc2001plus_enable_hwecc; doc->chips_per_floor = 1; mtd->name = "DiskOnChip Millennium Plus"; return 1; } static int doc200x_attach_chip(struct nand_chip *chip) { if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) return 0; chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; chip->ecc.size = 512; chip->ecc.bytes = 6; chip->ecc.strength = 2; chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; chip->ecc.hwctl = doc200x_enable_hwecc; chip->ecc.calculate = doc200x_calculate_ecc; chip->ecc.correct = doc200x_correct_data; return 0; } static const struct nand_controller_ops doc200x_ops = { .exec_op = doc200x_exec_op, .attach_chip = doc200x_attach_chip, }; static const struct nand_controller_ops doc2001plus_ops = { .exec_op = doc2001plus_exec_op, .attach_chip = doc200x_attach_chip, }; static int __init doc_probe(unsigned long physadr) { struct nand_chip *nand = NULL; struct doc_priv *doc = NULL; unsigned char ChipID; struct mtd_info *mtd; void __iomem *virtadr; unsigned char save_control; unsigned char tmp, tmpb, tmpc; int reg, len, numchips; int ret = 0; if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) return -EBUSY; virtadr = ioremap(physadr, DOC_IOREMAP_LEN); if (!virtadr) { pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); ret = -EIO; goto error_ioremap; } /* It's not possible to cleanly detect the DiskOnChip - the * bootup procedure will put the device into reset mode, and * it's not possible to talk to it without actually writing * to the DOCControl register. So we store the current contents * of the DOCControl register's location, in case we later decide * that it's not a DiskOnChip, and want to put it back how we * found it. */ save_control = ReadDOC(virtadr, DOCControl); /* Reset the DiskOnChip ASIC */ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); /* Enable the DiskOnChip ASIC */ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); ChipID = ReadDOC(virtadr, ChipID); switch (ChipID) { case DOC_ChipID_Doc2k: reg = DoC_2k_ECCStatus; break; case DOC_ChipID_DocMil: reg = DoC_ECCConf; break; case DOC_ChipID_DocMilPlus16: case DOC_ChipID_DocMilPlus32: case 0: /* Possible Millennium Plus, need to do more checks */ /* Possibly release from power down mode */ for (tmp = 0; (tmp < 4); tmp++) ReadDOC(virtadr, Mplus_Power); /* Reset the Millennium Plus ASIC */ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; WriteDOC(tmp, virtadr, Mplus_DOCControl); WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); usleep_range(1000, 2000); /* Enable the Millennium Plus ASIC */ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; WriteDOC(tmp, virtadr, Mplus_DOCControl); WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); usleep_range(1000, 2000); ChipID = ReadDOC(virtadr, ChipID); switch (ChipID) { case DOC_ChipID_DocMilPlus16: reg = DoC_Mplus_Toggle; break; case DOC_ChipID_DocMilPlus32: pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); fallthrough; default: ret = -ENODEV; goto notfound; } break; default: ret = -ENODEV; goto notfound; } /* Check the TOGGLE bit in the ECC register */ tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; if ((tmp == tmpb) || (tmp != tmpc)) { pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); ret = -ENODEV; goto notfound; } for (mtd = doclist; mtd; mtd = doc->nextdoc) { unsigned char oldval; unsigned char newval; nand = mtd_to_nand(mtd); doc = nand_get_controller_data(nand); /* Use the alias resolution register to determine if this is in fact the same DOC aliased to a new address. If writes to one chip's alias resolution register change the value on the other chip, they're the same chip. */ if (ChipID == DOC_ChipID_DocMilPlus16) { oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); newval = ReadDOC(virtadr, Mplus_AliasResolution); } else { oldval = ReadDOC(doc->virtadr, AliasResolution); newval = ReadDOC(virtadr, AliasResolution); } if (oldval != newval) continue; if (ChipID == DOC_ChipID_DocMilPlus16) { WriteDOC(~newval, virtadr, Mplus_AliasResolution); oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it } else { WriteDOC(~newval, virtadr, AliasResolution); oldval = ReadDOC(doc->virtadr, AliasResolution); WriteDOC(newval, virtadr, AliasResolution); // restore it } newval = ~newval; if (oldval == newval) { pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); goto notfound; } } pr_notice("DiskOnChip found at 0x%lx\n", physadr); len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); nand = kzalloc(len, GFP_KERNEL); if (!nand) { ret = -ENOMEM; goto fail; } /* * Allocate a RS codec instance * * Symbolsize is 10 (bits) * Primitve polynomial is x^10+x^3+1 * First consecutive root is 510 * Primitve element to generate roots = 1 * Generator polinomial degree = 4 */ doc = (struct doc_priv *) (nand + 1); doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); if (!doc->rs_decoder) { pr_err("DiskOnChip: Could not create a RS codec\n"); ret = -ENOMEM; goto fail; } nand_controller_init(&doc->base); if (ChipID == DOC_ChipID_DocMilPlus16) doc->base.ops = &doc2001plus_ops; else doc->base.ops = &doc200x_ops; mtd = nand_to_mtd(nand); nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); nand->bbt_md = nand->bbt_td + 1; mtd->owner = THIS_MODULE; mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); nand->controller = &doc->base; nand_set_controller_data(nand, doc); nand->bbt_options = NAND_BBT_USE_FLASH; /* Skip the automatic BBT scan so we can run it manually */ nand->options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK; doc->physadr = physadr; doc->virtadr = virtadr; doc->ChipID = ChipID; doc->curfloor = -1; doc->curchip = -1; doc->mh0_page = -1; doc->mh1_page = -1; doc->nextdoc = doclist; if (ChipID == DOC_ChipID_Doc2k) numchips = doc2000_init(mtd); else if (ChipID == DOC_ChipID_DocMilPlus16) numchips = doc2001plus_init(mtd); else numchips = doc2001_init(mtd); if ((ret = nand_scan(nand, numchips)) || (ret = doc->late_init(mtd))) { /* DBB note: i believe nand_cleanup is necessary here, as buffers may have been allocated in nand_base. Check with Thomas. FIX ME! */ nand_cleanup(nand); goto fail; } /* Success! */ doclist = mtd; return 0; notfound: /* Put back the contents of the DOCControl register, in case it's not actually a DiskOnChip. */ WriteDOC(save_control, virtadr, DOCControl); fail: if (doc) free_rs(doc->rs_decoder); kfree(nand); iounmap(virtadr); error_ioremap: release_mem_region(physadr, DOC_IOREMAP_LEN); return ret; } static void release_nanddoc(void) { struct mtd_info *mtd, *nextmtd; struct nand_chip *nand; struct doc_priv *doc; int ret; for (mtd = doclist; mtd; mtd = nextmtd) { nand = mtd_to_nand(mtd); doc = nand_get_controller_data(nand); nextmtd = doc->nextdoc; ret = mtd_device_unregister(mtd); WARN_ON(ret); nand_cleanup(nand); iounmap(doc->virtadr); release_mem_region(doc->physadr, DOC_IOREMAP_LEN); free_rs(doc->rs_decoder); kfree(nand); } } static int __init init_nanddoc(void) { int i, ret = 0; if (doc_config_location) { pr_info("Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); ret = doc_probe(doc_config_location); if (ret < 0) return ret; } else { for (i = 0; (doc_locations[i] != 0xffffffff); i++) { doc_probe(doc_locations[i]); } } /* No banner message any more. Print a message if no DiskOnChip found, so the user knows we at least tried. */ if (!doclist) { pr_info("No valid DiskOnChip devices found\n"); ret = -ENODEV; } return ret; } static void __exit cleanup_nanddoc(void) { /* Cleanup the nand/DoC resources */ release_nanddoc(); } module_init(init_nanddoc); module_exit(cleanup_nanddoc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); |