Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | // SPDX-License-Identifier: GPL-2.0 /* * Request reply cache. This is currently a global cache, but this may * change in the future and be a per-client cache. * * This code is heavily inspired by the 44BSD implementation, although * it does things a bit differently. * * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> */ #include <linux/sunrpc/svc_xprt.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/sunrpc/addr.h> #include <linux/highmem.h> #include <linux/log2.h> #include <linux/hash.h> #include <net/checksum.h> #include "nfsd.h" #include "cache.h" #include "trace.h" /* * We use this value to determine the number of hash buckets from the max * cache size, the idea being that when the cache is at its maximum number * of entries, then this should be the average number of entries per bucket. */ #define TARGET_BUCKET_SIZE 64 struct nfsd_drc_bucket { struct rb_root rb_head; struct list_head lru_head; spinlock_t cache_lock; }; static struct kmem_cache *drc_slab; static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc); static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc); /* * Put a cap on the size of the DRC based on the amount of available * low memory in the machine. * * 64MB: 8192 * 128MB: 11585 * 256MB: 16384 * 512MB: 23170 * 1GB: 32768 * 2GB: 46340 * 4GB: 65536 * 8GB: 92681 * 16GB: 131072 * * ...with a hard cap of 256k entries. In the worst case, each entry will be * ~1k, so the above numbers should give a rough max of the amount of memory * used in k. * * XXX: these limits are per-container, so memory used will increase * linearly with number of containers. Maybe that's OK. */ static unsigned int nfsd_cache_size_limit(void) { unsigned int limit; unsigned long low_pages = totalram_pages() - totalhigh_pages(); limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); return min_t(unsigned int, limit, 256*1024); } /* * Compute the number of hash buckets we need. Divide the max cachesize by * the "target" max bucket size, and round up to next power of two. */ static unsigned int nfsd_hashsize(unsigned int limit) { return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); } static struct svc_cacherep * nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum, struct nfsd_net *nn) { struct svc_cacherep *rp; rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); if (rp) { rp->c_state = RC_UNUSED; rp->c_type = RC_NOCACHE; RB_CLEAR_NODE(&rp->c_node); INIT_LIST_HEAD(&rp->c_lru); memset(&rp->c_key, 0, sizeof(rp->c_key)); rp->c_key.k_xid = rqstp->rq_xid; rp->c_key.k_proc = rqstp->rq_proc; rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); rp->c_key.k_prot = rqstp->rq_prot; rp->c_key.k_vers = rqstp->rq_vers; rp->c_key.k_len = rqstp->rq_arg.len; rp->c_key.k_csum = csum; } return rp; } static void nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, struct nfsd_net *nn) { if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); kfree(rp->c_replvec.iov_base); } if (rp->c_state != RC_UNUSED) { rb_erase(&rp->c_node, &b->rb_head); list_del(&rp->c_lru); atomic_dec(&nn->num_drc_entries); nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); } kmem_cache_free(drc_slab, rp); } static void nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, struct nfsd_net *nn) { spin_lock(&b->cache_lock); nfsd_reply_cache_free_locked(b, rp, nn); spin_unlock(&b->cache_lock); } int nfsd_drc_slab_create(void) { drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep), 0, 0, NULL); return drc_slab ? 0: -ENOMEM; } void nfsd_drc_slab_free(void) { kmem_cache_destroy(drc_slab); } /** * nfsd_net_reply_cache_init - per net namespace reply cache set-up * @nn: nfsd_net being initialized * * Returns zero on succes; otherwise a negative errno is returned. */ int nfsd_net_reply_cache_init(struct nfsd_net *nn) { return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM); } /** * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down * @nn: nfsd_net being freed * */ void nfsd_net_reply_cache_destroy(struct nfsd_net *nn) { nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM); } int nfsd_reply_cache_init(struct nfsd_net *nn) { unsigned int hashsize; unsigned int i; int status = 0; nn->max_drc_entries = nfsd_cache_size_limit(); atomic_set(&nn->num_drc_entries, 0); hashsize = nfsd_hashsize(nn->max_drc_entries); nn->maskbits = ilog2(hashsize); nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan; nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count; nn->nfsd_reply_cache_shrinker.seeks = 1; status = register_shrinker(&nn->nfsd_reply_cache_shrinker, "nfsd-reply:%s", nn->nfsd_name); if (status) return status; nn->drc_hashtbl = kvzalloc(array_size(hashsize, sizeof(*nn->drc_hashtbl)), GFP_KERNEL); if (!nn->drc_hashtbl) goto out_shrinker; for (i = 0; i < hashsize; i++) { INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); spin_lock_init(&nn->drc_hashtbl[i].cache_lock); } nn->drc_hashsize = hashsize; return 0; out_shrinker: unregister_shrinker(&nn->nfsd_reply_cache_shrinker); printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); return -ENOMEM; } void nfsd_reply_cache_shutdown(struct nfsd_net *nn) { struct svc_cacherep *rp; unsigned int i; unregister_shrinker(&nn->nfsd_reply_cache_shrinker); for (i = 0; i < nn->drc_hashsize; i++) { struct list_head *head = &nn->drc_hashtbl[i].lru_head; while (!list_empty(head)) { rp = list_first_entry(head, struct svc_cacherep, c_lru); nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], rp, nn); } } kvfree(nn->drc_hashtbl); nn->drc_hashtbl = NULL; nn->drc_hashsize = 0; } /* * Move cache entry to end of LRU list, and queue the cleaner to run if it's * not already scheduled. */ static void lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) { rp->c_timestamp = jiffies; list_move_tail(&rp->c_lru, &b->lru_head); } static noinline struct nfsd_drc_bucket * nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn) { unsigned int hash = hash_32((__force u32)xid, nn->maskbits); return &nn->drc_hashtbl[hash]; } static long prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn, unsigned int max) { struct svc_cacherep *rp, *tmp; long freed = 0; list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { /* * Don't free entries attached to calls that are still * in-progress, but do keep scanning the list. */ if (rp->c_state == RC_INPROG) continue; if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) break; nfsd_reply_cache_free_locked(b, rp, nn); if (max && freed++ > max) break; } return freed; } static long nfsd_prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn) { return prune_bucket(b, nn, 3); } /* * Walk the LRU list and prune off entries that are older than RC_EXPIRE. * Also prune the oldest ones when the total exceeds the max number of entries. */ static long prune_cache_entries(struct nfsd_net *nn) { unsigned int i; long freed = 0; for (i = 0; i < nn->drc_hashsize; i++) { struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; if (list_empty(&b->lru_head)) continue; spin_lock(&b->cache_lock); freed += prune_bucket(b, nn, 0); spin_unlock(&b->cache_lock); } return freed; } static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) { struct nfsd_net *nn = container_of(shrink, struct nfsd_net, nfsd_reply_cache_shrinker); return atomic_read(&nn->num_drc_entries); } static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) { struct nfsd_net *nn = container_of(shrink, struct nfsd_net, nfsd_reply_cache_shrinker); return prune_cache_entries(nn); } /* * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes */ static __wsum nfsd_cache_csum(struct svc_rqst *rqstp) { int idx; unsigned int base; __wsum csum; struct xdr_buf *buf = &rqstp->rq_arg; const unsigned char *p = buf->head[0].iov_base; size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, RC_CSUMLEN); size_t len = min(buf->head[0].iov_len, csum_len); /* rq_arg.head first */ csum = csum_partial(p, len, 0); csum_len -= len; /* Continue into page array */ idx = buf->page_base / PAGE_SIZE; base = buf->page_base & ~PAGE_MASK; while (csum_len) { p = page_address(buf->pages[idx]) + base; len = min_t(size_t, PAGE_SIZE - base, csum_len); csum = csum_partial(p, len, csum); csum_len -= len; base = 0; ++idx; } return csum; } static int nfsd_cache_key_cmp(const struct svc_cacherep *key, const struct svc_cacherep *rp, struct nfsd_net *nn) { if (key->c_key.k_xid == rp->c_key.k_xid && key->c_key.k_csum != rp->c_key.k_csum) { nfsd_stats_payload_misses_inc(nn); trace_nfsd_drc_mismatch(nn, key, rp); } return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); } /* * Search the request hash for an entry that matches the given rqstp. * Must be called with cache_lock held. Returns the found entry or * inserts an empty key on failure. */ static struct svc_cacherep * nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key, struct nfsd_net *nn) { struct svc_cacherep *rp, *ret = key; struct rb_node **p = &b->rb_head.rb_node, *parent = NULL; unsigned int entries = 0; int cmp; while (*p != NULL) { ++entries; parent = *p; rp = rb_entry(parent, struct svc_cacherep, c_node); cmp = nfsd_cache_key_cmp(key, rp, nn); if (cmp < 0) p = &parent->rb_left; else if (cmp > 0) p = &parent->rb_right; else { ret = rp; goto out; } } rb_link_node(&key->c_node, parent, p); rb_insert_color(&key->c_node, &b->rb_head); out: /* tally hash chain length stats */ if (entries > nn->longest_chain) { nn->longest_chain = entries; nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); } else if (entries == nn->longest_chain) { /* prefer to keep the smallest cachesize possible here */ nn->longest_chain_cachesize = min_t(unsigned int, nn->longest_chain_cachesize, atomic_read(&nn->num_drc_entries)); } lru_put_end(b, ret); return ret; } /** * nfsd_cache_lookup - Find an entry in the duplicate reply cache * @rqstp: Incoming Call to find * * Try to find an entry matching the current call in the cache. When none * is found, we try to grab the oldest expired entry off the LRU list. If * a suitable one isn't there, then drop the cache_lock and allocate a * new one, then search again in case one got inserted while this thread * didn't hold the lock. * * Return values: * %RC_DOIT: Process the request normally * %RC_REPLY: Reply from cache * %RC_DROPIT: Do not process the request further */ int nfsd_cache_lookup(struct svc_rqst *rqstp) { struct nfsd_net *nn; struct svc_cacherep *rp, *found; __wsum csum; struct nfsd_drc_bucket *b; int type = rqstp->rq_cachetype; int rtn = RC_DOIT; rqstp->rq_cacherep = NULL; if (type == RC_NOCACHE) { nfsd_stats_rc_nocache_inc(); goto out; } csum = nfsd_cache_csum(rqstp); /* * Since the common case is a cache miss followed by an insert, * preallocate an entry. */ nn = net_generic(SVC_NET(rqstp), nfsd_net_id); rp = nfsd_reply_cache_alloc(rqstp, csum, nn); if (!rp) goto out; b = nfsd_cache_bucket_find(rqstp->rq_xid, nn); spin_lock(&b->cache_lock); found = nfsd_cache_insert(b, rp, nn); if (found != rp) goto found_entry; nfsd_stats_rc_misses_inc(); rqstp->rq_cacherep = rp; rp->c_state = RC_INPROG; atomic_inc(&nn->num_drc_entries); nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); nfsd_prune_bucket(b, nn); out_unlock: spin_unlock(&b->cache_lock); out: return rtn; found_entry: /* We found a matching entry which is either in progress or done. */ nfsd_reply_cache_free_locked(NULL, rp, nn); nfsd_stats_rc_hits_inc(); rtn = RC_DROPIT; rp = found; /* Request being processed */ if (rp->c_state == RC_INPROG) goto out_trace; /* From the hall of fame of impractical attacks: * Is this a user who tries to snoop on the cache? */ rtn = RC_DOIT; if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) goto out_trace; /* Compose RPC reply header */ switch (rp->c_type) { case RC_NOCACHE: break; case RC_REPLSTAT: xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat); rtn = RC_REPLY; break; case RC_REPLBUFF: if (!nfsd_cache_append(rqstp, &rp->c_replvec)) goto out_unlock; /* should not happen */ rtn = RC_REPLY; break; default: WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); } out_trace: trace_nfsd_drc_found(nn, rqstp, rtn); goto out_unlock; } /** * nfsd_cache_update - Update an entry in the duplicate reply cache. * @rqstp: svc_rqst with a finished Reply * @cachetype: which cache to update * @statp: pointer to Reply's NFS status code, or NULL * * This is called from nfsd_dispatch when the procedure has been * executed and the complete reply is in rqstp->rq_res. * * We're copying around data here rather than swapping buffers because * the toplevel loop requires max-sized buffers, which would be a waste * of memory for a cache with a max reply size of 100 bytes (diropokres). * * If we should start to use different types of cache entries tailored * specifically for attrstat and fh's, we may save even more space. * * Also note that a cachetype of RC_NOCACHE can legally be passed when * nfsd failed to encode a reply that otherwise would have been cached. * In this case, nfsd_cache_update is called with statp == NULL. */ void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) { struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); struct svc_cacherep *rp = rqstp->rq_cacherep; struct kvec *resv = &rqstp->rq_res.head[0], *cachv; struct nfsd_drc_bucket *b; int len; size_t bufsize = 0; if (!rp) return; b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn); len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); len >>= 2; /* Don't cache excessive amounts of data and XDR failures */ if (!statp || len > (256 >> 2)) { nfsd_reply_cache_free(b, rp, nn); return; } switch (cachetype) { case RC_REPLSTAT: if (len != 1) printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); rp->c_replstat = *statp; break; case RC_REPLBUFF: cachv = &rp->c_replvec; bufsize = len << 2; cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); if (!cachv->iov_base) { nfsd_reply_cache_free(b, rp, nn); return; } cachv->iov_len = bufsize; memcpy(cachv->iov_base, statp, bufsize); break; case RC_NOCACHE: nfsd_reply_cache_free(b, rp, nn); return; } spin_lock(&b->cache_lock); nfsd_stats_drc_mem_usage_add(nn, bufsize); lru_put_end(b, rp); rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); rp->c_type = cachetype; rp->c_state = RC_DONE; spin_unlock(&b->cache_lock); return; } /* * Copy cached reply to current reply buffer. Should always fit. * FIXME as reply is in a page, we should just attach the page, and * keep a refcount.... */ static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) { struct kvec *vec = &rqstp->rq_res.head[0]; if (vec->iov_len + data->iov_len > PAGE_SIZE) { printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n", data->iov_len); return 0; } memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); vec->iov_len += data->iov_len; return 1; } /* * Note that fields may be added, removed or reordered in the future. Programs * scraping this file for info should test the labels to ensure they're * getting the correct field. */ int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) { struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info, nfsd_net_id); seq_printf(m, "max entries: %u\n", nn->max_drc_entries); seq_printf(m, "num entries: %u\n", atomic_read(&nn->num_drc_entries)); seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); seq_printf(m, "mem usage: %lld\n", percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE])); seq_printf(m, "cache hits: %lld\n", percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS])); seq_printf(m, "cache misses: %lld\n", percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES])); seq_printf(m, "not cached: %lld\n", percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE])); seq_printf(m, "payload misses: %lld\n", percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES])); seq_printf(m, "longest chain len: %u\n", nn->longest_chain); seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); return 0; } |