Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | /* mpi-inv.c - MPI functions * Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "mpi-internal.h" /**************** * Calculate the multiplicative inverse X of A mod N * That is: Find the solution x for * 1 = (a*x) mod n */ int mpi_invm(MPI x, MPI a, MPI n) { /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X) * modified according to Michael Penk's solution for Exercise 35 * with further enhancement */ MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3; unsigned int k; int sign; int odd; if (!mpi_cmp_ui(a, 0)) return 0; /* Inverse does not exists. */ if (!mpi_cmp_ui(n, 1)) return 0; /* Inverse does not exists. */ u = mpi_copy(a); v = mpi_copy(n); for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) { mpi_rshift(u, u, 1); mpi_rshift(v, v, 1); } odd = mpi_test_bit(v, 0); u1 = mpi_alloc_set_ui(1); if (!odd) u2 = mpi_alloc_set_ui(0); u3 = mpi_copy(u); v1 = mpi_copy(v); if (!odd) { v2 = mpi_alloc(mpi_get_nlimbs(u)); mpi_sub(v2, u1, u); /* U is used as const 1 */ } v3 = mpi_copy(v); if (mpi_test_bit(u, 0)) { /* u is odd */ t1 = mpi_alloc_set_ui(0); if (!odd) { t2 = mpi_alloc_set_ui(1); t2->sign = 1; } t3 = mpi_copy(v); t3->sign = !t3->sign; goto Y4; } else { t1 = mpi_alloc_set_ui(1); if (!odd) t2 = mpi_alloc_set_ui(0); t3 = mpi_copy(u); } do { do { if (!odd) { if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) { /* one is odd */ mpi_add(t1, t1, v); mpi_sub(t2, t2, u); } mpi_rshift(t1, t1, 1); mpi_rshift(t2, t2, 1); mpi_rshift(t3, t3, 1); } else { if (mpi_test_bit(t1, 0)) mpi_add(t1, t1, v); mpi_rshift(t1, t1, 1); mpi_rshift(t3, t3, 1); } Y4: ; } while (!mpi_test_bit(t3, 0)); /* while t3 is even */ if (!t3->sign) { mpi_set(u1, t1); if (!odd) mpi_set(u2, t2); mpi_set(u3, t3); } else { mpi_sub(v1, v, t1); sign = u->sign; u->sign = !u->sign; if (!odd) mpi_sub(v2, u, t2); u->sign = sign; sign = t3->sign; t3->sign = !t3->sign; mpi_set(v3, t3); t3->sign = sign; } mpi_sub(t1, u1, v1); if (!odd) mpi_sub(t2, u2, v2); mpi_sub(t3, u3, v3); if (t1->sign) { mpi_add(t1, t1, v); if (!odd) mpi_sub(t2, t2, u); } } while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */ /* mpi_lshift( u3, k ); */ mpi_set(x, u1); mpi_free(u1); mpi_free(v1); mpi_free(t1); if (!odd) { mpi_free(u2); mpi_free(v2); mpi_free(t2); } mpi_free(u3); mpi_free(v3); mpi_free(t3); mpi_free(u); mpi_free(v); return 1; } EXPORT_SYMBOL_GPL(mpi_invm); |