Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2013 STMicroelectronics Limited * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com> */ #include <linux/kernel.h> #include <linux/clk.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <media/rc-core.h> #include <linux/pinctrl/consumer.h> #include <linux/pm_wakeirq.h> struct st_rc_device { struct device *dev; int irq; int irq_wake; struct clk *sys_clock; void __iomem *base; /* Register base address */ void __iomem *rx_base;/* RX Register base address */ struct rc_dev *rdev; bool overclocking; int sample_mult; int sample_div; bool rxuhfmode; struct reset_control *rstc; }; /* Registers */ #define IRB_SAMPLE_RATE_COMM 0x64 /* sample freq divisor*/ #define IRB_CLOCK_SEL 0x70 /* clock select */ #define IRB_CLOCK_SEL_STATUS 0x74 /* clock status */ /* IRB IR/UHF receiver registers */ #define IRB_RX_ON 0x40 /* pulse time capture */ #define IRB_RX_SYS 0X44 /* sym period capture */ #define IRB_RX_INT_EN 0x48 /* IRQ enable (R/W) */ #define IRB_RX_INT_STATUS 0x4c /* IRQ status (R/W) */ #define IRB_RX_EN 0x50 /* Receive enable */ #define IRB_MAX_SYM_PERIOD 0x54 /* max sym value */ #define IRB_RX_INT_CLEAR 0x58 /* overrun status */ #define IRB_RX_STATUS 0x6c /* receive status */ #define IRB_RX_NOISE_SUPPR 0x5c /* noise suppression */ #define IRB_RX_POLARITY_INV 0x68 /* polarity inverter */ /* * IRQ set: Enable full FIFO 1 -> bit 3; * Enable overrun IRQ 1 -> bit 2; * Enable last symbol IRQ 1 -> bit 1: * Enable RX interrupt 1 -> bit 0; */ #define IRB_RX_INTS 0x0f #define IRB_RX_OVERRUN_INT 0x04 /* maximum symbol period (microsecs),timeout to detect end of symbol train */ #define MAX_SYMB_TIME 0x5000 #define IRB_SAMPLE_FREQ 10000000 #define IRB_FIFO_NOT_EMPTY 0xff00 #define IRB_OVERFLOW 0x4 #define IRB_TIMEOUT 0xffff #define IR_ST_NAME "st-rc" static void st_rc_send_lirc_timeout(struct rc_dev *rdev) { struct ir_raw_event ev = { .timeout = true, .duration = rdev->timeout }; ir_raw_event_store(rdev, &ev); } /* * RX graphical example to better understand the difference between ST IR block * output and standard definition used by LIRC (and most of the world!) * * mark mark * |-IRB_RX_ON-| |-IRB_RX_ON-| * ___ ___ ___ ___ ___ ___ _ * | | | | | | | | | | | | | * | | | | | | space 0 | | | | | | space 1 | * _____| |__| |__| |____________________________| |__| |__| |_____________| * * |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------| * * |------------- encoding bit 0 -----------|---- encoding bit 1 -----| * * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark) * The mark time represents the amount of time the carrier (usually 36-40kHz) * is detected.The above examples shows Pulse Width Modulation encoding where * bit 0 is represented by space>mark. */ static irqreturn_t st_rc_rx_interrupt(int irq, void *data) { unsigned long timeout; unsigned int symbol, mark = 0; struct st_rc_device *dev = data; int last_symbol = 0; u32 status, int_status; struct ir_raw_event ev = {}; if (dev->irq_wake) pm_wakeup_event(dev->dev, 0); /* FIXME: is 10ms good enough ? */ timeout = jiffies + msecs_to_jiffies(10); do { status = readl(dev->rx_base + IRB_RX_STATUS); if (!(status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW))) break; int_status = readl(dev->rx_base + IRB_RX_INT_STATUS); if (unlikely(int_status & IRB_RX_OVERRUN_INT)) { /* discard the entire collection in case of errors! */ ir_raw_event_overflow(dev->rdev); dev_info(dev->dev, "IR RX overrun\n"); writel(IRB_RX_OVERRUN_INT, dev->rx_base + IRB_RX_INT_CLEAR); continue; } symbol = readl(dev->rx_base + IRB_RX_SYS); mark = readl(dev->rx_base + IRB_RX_ON); if (symbol == IRB_TIMEOUT) last_symbol = 1; /* Ignore any noise */ if ((mark > 2) && (symbol > 1)) { symbol -= mark; if (dev->overclocking) { /* adjustments to timings */ symbol *= dev->sample_mult; symbol /= dev->sample_div; mark *= dev->sample_mult; mark /= dev->sample_div; } ev.duration = mark; ev.pulse = true; ir_raw_event_store(dev->rdev, &ev); if (!last_symbol) { ev.duration = symbol; ev.pulse = false; ir_raw_event_store(dev->rdev, &ev); } else { st_rc_send_lirc_timeout(dev->rdev); } } last_symbol = 0; } while (time_is_after_jiffies(timeout)); writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR); /* Empty software fifo */ ir_raw_event_handle(dev->rdev); return IRQ_HANDLED; } static int st_rc_hardware_init(struct st_rc_device *dev) { int ret; int baseclock, freqdiff; unsigned int rx_max_symbol_per = MAX_SYMB_TIME; unsigned int rx_sampling_freq_div; /* Enable the IP */ reset_control_deassert(dev->rstc); ret = clk_prepare_enable(dev->sys_clock); if (ret) { dev_err(dev->dev, "Failed to prepare/enable system clock\n"); return ret; } baseclock = clk_get_rate(dev->sys_clock); /* IRB input pins are inverted internally from high to low. */ writel(1, dev->rx_base + IRB_RX_POLARITY_INV); rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ; writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM); freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ); if (freqdiff) { /* over clocking, workout the adjustment factors */ dev->overclocking = true; dev->sample_mult = 1000; dev->sample_div = baseclock / (10000 * rx_sampling_freq_div); rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div; } writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD); return 0; } static void st_rc_remove(struct platform_device *pdev) { struct st_rc_device *rc_dev = platform_get_drvdata(pdev); dev_pm_clear_wake_irq(&pdev->dev); device_init_wakeup(&pdev->dev, false); clk_disable_unprepare(rc_dev->sys_clock); rc_unregister_device(rc_dev->rdev); } static int st_rc_open(struct rc_dev *rdev) { struct st_rc_device *dev = rdev->priv; unsigned long flags; local_irq_save(flags); /* enable interrupts and receiver */ writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN); writel(0x01, dev->rx_base + IRB_RX_EN); local_irq_restore(flags); return 0; } static void st_rc_close(struct rc_dev *rdev) { struct st_rc_device *dev = rdev->priv; /* disable interrupts and receiver */ writel(0x00, dev->rx_base + IRB_RX_EN); writel(0x00, dev->rx_base + IRB_RX_INT_EN); } static int st_rc_probe(struct platform_device *pdev) { int ret = -EINVAL; struct rc_dev *rdev; struct device *dev = &pdev->dev; struct st_rc_device *rc_dev; struct device_node *np = pdev->dev.of_node; const char *rx_mode; rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL); if (!rc_dev) return -ENOMEM; rdev = rc_allocate_device(RC_DRIVER_IR_RAW); if (!rdev) return -ENOMEM; if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) { if (!strcmp(rx_mode, "uhf")) { rc_dev->rxuhfmode = true; } else if (!strcmp(rx_mode, "infrared")) { rc_dev->rxuhfmode = false; } else { dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode); goto err; } } else { goto err; } rc_dev->sys_clock = devm_clk_get(dev, NULL); if (IS_ERR(rc_dev->sys_clock)) { dev_err(dev, "System clock not found\n"); ret = PTR_ERR(rc_dev->sys_clock); goto err; } rc_dev->irq = platform_get_irq(pdev, 0); if (rc_dev->irq < 0) { ret = rc_dev->irq; goto err; } rc_dev->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rc_dev->base)) { ret = PTR_ERR(rc_dev->base); goto err; } if (rc_dev->rxuhfmode) rc_dev->rx_base = rc_dev->base + 0x40; else rc_dev->rx_base = rc_dev->base; rc_dev->rstc = reset_control_get_optional_exclusive(dev, NULL); if (IS_ERR(rc_dev->rstc)) { ret = PTR_ERR(rc_dev->rstc); goto err; } rc_dev->dev = dev; platform_set_drvdata(pdev, rc_dev); ret = st_rc_hardware_init(rc_dev); if (ret) goto err; rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER; /* rx sampling rate is 10Mhz */ rdev->rx_resolution = 100; rdev->timeout = MAX_SYMB_TIME; rdev->priv = rc_dev; rdev->open = st_rc_open; rdev->close = st_rc_close; rdev->driver_name = IR_ST_NAME; rdev->map_name = RC_MAP_EMPTY; rdev->device_name = "ST Remote Control Receiver"; ret = rc_register_device(rdev); if (ret < 0) goto clkerr; rc_dev->rdev = rdev; if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt, 0, IR_ST_NAME, rc_dev) < 0) { dev_err(dev, "IRQ %d register failed\n", rc_dev->irq); ret = -EINVAL; goto rcerr; } /* enable wake via this device */ device_init_wakeup(dev, true); dev_pm_set_wake_irq(dev, rc_dev->irq); /* * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW * lircd expects a long space first before a signal train to sync. */ st_rc_send_lirc_timeout(rdev); dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR"); return ret; rcerr: rc_unregister_device(rdev); rdev = NULL; clkerr: clk_disable_unprepare(rc_dev->sys_clock); err: rc_free_device(rdev); dev_err(dev, "Unable to register device (%d)\n", ret); return ret; } #ifdef CONFIG_PM_SLEEP static int st_rc_suspend(struct device *dev) { struct st_rc_device *rc_dev = dev_get_drvdata(dev); if (device_may_wakeup(dev)) { if (!enable_irq_wake(rc_dev->irq)) rc_dev->irq_wake = 1; else return -EINVAL; } else { pinctrl_pm_select_sleep_state(dev); writel(0x00, rc_dev->rx_base + IRB_RX_EN); writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN); clk_disable_unprepare(rc_dev->sys_clock); reset_control_assert(rc_dev->rstc); } return 0; } static int st_rc_resume(struct device *dev) { int ret; struct st_rc_device *rc_dev = dev_get_drvdata(dev); struct rc_dev *rdev = rc_dev->rdev; if (rc_dev->irq_wake) { disable_irq_wake(rc_dev->irq); rc_dev->irq_wake = 0; } else { pinctrl_pm_select_default_state(dev); ret = st_rc_hardware_init(rc_dev); if (ret) return ret; if (rdev->users) { writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN); writel(0x01, rc_dev->rx_base + IRB_RX_EN); } } return 0; } #endif static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume); #ifdef CONFIG_OF static const struct of_device_id st_rc_match[] = { { .compatible = "st,comms-irb", }, {}, }; MODULE_DEVICE_TABLE(of, st_rc_match); #endif static struct platform_driver st_rc_driver = { .driver = { .name = IR_ST_NAME, .of_match_table = of_match_ptr(st_rc_match), .pm = &st_rc_pm_ops, }, .probe = st_rc_probe, .remove_new = st_rc_remove, }; module_platform_driver(st_rc_driver); MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms"); MODULE_AUTHOR("STMicroelectronics (R&D) Ltd"); MODULE_LICENSE("GPL"); |