Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Test for s390x KVM_S390_MEM_OP
 *
 * Copyright (C) 2019, Red Hat, Inc.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <pthread.h>

#include <linux/bits.h>

#include "test_util.h"
#include "kvm_util.h"
#include "kselftest.h"

enum mop_target {
	LOGICAL,
	SIDA,
	ABSOLUTE,
	INVALID,
};

enum mop_access_mode {
	READ,
	WRITE,
	CMPXCHG,
};

struct mop_desc {
	uintptr_t gaddr;
	uintptr_t gaddr_v;
	uint64_t set_flags;
	unsigned int f_check : 1;
	unsigned int f_inject : 1;
	unsigned int f_key : 1;
	unsigned int _gaddr_v : 1;
	unsigned int _set_flags : 1;
	unsigned int _sida_offset : 1;
	unsigned int _ar : 1;
	uint32_t size;
	enum mop_target target;
	enum mop_access_mode mode;
	void *buf;
	uint32_t sida_offset;
	void *old;
	uint8_t old_value[16];
	bool *cmpxchg_success;
	uint8_t ar;
	uint8_t key;
};

const uint8_t NO_KEY = 0xff;

static struct kvm_s390_mem_op ksmo_from_desc(struct mop_desc *desc)
{
	struct kvm_s390_mem_op ksmo = {
		.gaddr = (uintptr_t)desc->gaddr,
		.size = desc->size,
		.buf = ((uintptr_t)desc->buf),
		.reserved = "ignored_ignored_ignored_ignored"
	};

	switch (desc->target) {
	case LOGICAL:
		if (desc->mode == READ)
			ksmo.op = KVM_S390_MEMOP_LOGICAL_READ;
		if (desc->mode == WRITE)
			ksmo.op = KVM_S390_MEMOP_LOGICAL_WRITE;
		break;
	case SIDA:
		if (desc->mode == READ)
			ksmo.op = KVM_S390_MEMOP_SIDA_READ;
		if (desc->mode == WRITE)
			ksmo.op = KVM_S390_MEMOP_SIDA_WRITE;
		break;
	case ABSOLUTE:
		if (desc->mode == READ)
			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_READ;
		if (desc->mode == WRITE)
			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_WRITE;
		if (desc->mode == CMPXCHG) {
			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_CMPXCHG;
			ksmo.old_addr = (uint64_t)desc->old;
			memcpy(desc->old_value, desc->old, desc->size);
		}
		break;
	case INVALID:
		ksmo.op = -1;
	}
	if (desc->f_check)
		ksmo.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
	if (desc->f_inject)
		ksmo.flags |= KVM_S390_MEMOP_F_INJECT_EXCEPTION;
	if (desc->_set_flags)
		ksmo.flags = desc->set_flags;
	if (desc->f_key && desc->key != NO_KEY) {
		ksmo.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
		ksmo.key = desc->key;
	}
	if (desc->_ar)
		ksmo.ar = desc->ar;
	else
		ksmo.ar = 0;
	if (desc->_sida_offset)
		ksmo.sida_offset = desc->sida_offset;

	return ksmo;
}

struct test_info {
	struct kvm_vm *vm;
	struct kvm_vcpu *vcpu;
};

#define PRINT_MEMOP false
static void print_memop(struct kvm_vcpu *vcpu, const struct kvm_s390_mem_op *ksmo)
{
	if (!PRINT_MEMOP)
		return;

	if (!vcpu)
		printf("vm memop(");
	else
		printf("vcpu memop(");
	switch (ksmo->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		printf("LOGICAL, READ, ");
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		printf("LOGICAL, WRITE, ");
		break;
	case KVM_S390_MEMOP_SIDA_READ:
		printf("SIDA, READ, ");
		break;
	case KVM_S390_MEMOP_SIDA_WRITE:
		printf("SIDA, WRITE, ");
		break;
	case KVM_S390_MEMOP_ABSOLUTE_READ:
		printf("ABSOLUTE, READ, ");
		break;
	case KVM_S390_MEMOP_ABSOLUTE_WRITE:
		printf("ABSOLUTE, WRITE, ");
		break;
	case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
		printf("ABSOLUTE, CMPXCHG, ");
		break;
	}
	printf("gaddr=%llu, size=%u, buf=%llu, ar=%u, key=%u, old_addr=%llx",
	       ksmo->gaddr, ksmo->size, ksmo->buf, ksmo->ar, ksmo->key,
	       ksmo->old_addr);
	if (ksmo->flags & KVM_S390_MEMOP_F_CHECK_ONLY)
		printf(", CHECK_ONLY");
	if (ksmo->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION)
		printf(", INJECT_EXCEPTION");
	if (ksmo->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION)
		printf(", SKEY_PROTECTION");
	puts(")");
}

static int err_memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
			   struct mop_desc *desc)
{
	struct kvm_vcpu *vcpu = info.vcpu;

	if (!vcpu)
		return __vm_ioctl(info.vm, KVM_S390_MEM_OP, ksmo);
	else
		return __vcpu_ioctl(vcpu, KVM_S390_MEM_OP, ksmo);
}

static void memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
			struct mop_desc *desc)
{
	int r;

	r = err_memop_ioctl(info, ksmo, desc);
	if (ksmo->op == KVM_S390_MEMOP_ABSOLUTE_CMPXCHG) {
		if (desc->cmpxchg_success) {
			int diff = memcmp(desc->old_value, desc->old, desc->size);
			*desc->cmpxchg_success = !diff;
		}
	}
	TEST_ASSERT(!r, __KVM_IOCTL_ERROR("KVM_S390_MEM_OP", r));
}

#define MEMOP(err, info_p, mop_target_p, access_mode_p, buf_p, size_p, ...)	\
({										\
	struct test_info __info = (info_p);					\
	struct mop_desc __desc = {						\
		.target = (mop_target_p),					\
		.mode = (access_mode_p),					\
		.buf = (buf_p),							\
		.size = (size_p),						\
		__VA_ARGS__							\
	};									\
	struct kvm_s390_mem_op __ksmo;						\
										\
	if (__desc._gaddr_v) {							\
		if (__desc.target == ABSOLUTE)					\
			__desc.gaddr = addr_gva2gpa(__info.vm, __desc.gaddr_v);	\
		else								\
			__desc.gaddr = __desc.gaddr_v;				\
	}									\
	__ksmo = ksmo_from_desc(&__desc);					\
	print_memop(__info.vcpu, &__ksmo);					\
	err##memop_ioctl(__info, &__ksmo, &__desc);				\
})

#define MOP(...) MEMOP(, __VA_ARGS__)
#define ERR_MOP(...) MEMOP(err_, __VA_ARGS__)

#define GADDR(a) .gaddr = ((uintptr_t)a)
#define GADDR_V(v) ._gaddr_v = 1, .gaddr_v = ((uintptr_t)v)
#define CHECK_ONLY .f_check = 1
#define SET_FLAGS(f) ._set_flags = 1, .set_flags = (f)
#define SIDA_OFFSET(o) ._sida_offset = 1, .sida_offset = (o)
#define AR(a) ._ar = 1, .ar = (a)
#define KEY(a) .f_key = 1, .key = (a)
#define INJECT .f_inject = 1
#define CMPXCHG_OLD(o) .old = (o)
#define CMPXCHG_SUCCESS(s) .cmpxchg_success = (s)

#define CHECK_N_DO(f, ...) ({ f(__VA_ARGS__, CHECK_ONLY); f(__VA_ARGS__); })

#define PAGE_SHIFT 12
#define PAGE_SIZE (1ULL << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE - 1))
#define CR0_FETCH_PROTECTION_OVERRIDE	(1UL << (63 - 38))
#define CR0_STORAGE_PROTECTION_OVERRIDE	(1UL << (63 - 39))

static uint8_t __aligned(PAGE_SIZE) mem1[65536];
static uint8_t __aligned(PAGE_SIZE) mem2[65536];

struct test_default {
	struct kvm_vm *kvm_vm;
	struct test_info vm;
	struct test_info vcpu;
	struct kvm_run *run;
	int size;
};

static struct test_default test_default_init(void *guest_code)
{
	struct kvm_vcpu *vcpu;
	struct test_default t;

	t.size = min((size_t)kvm_check_cap(KVM_CAP_S390_MEM_OP), sizeof(mem1));
	t.kvm_vm = vm_create_with_one_vcpu(&vcpu, guest_code);
	t.vm = (struct test_info) { t.kvm_vm, NULL };
	t.vcpu = (struct test_info) { t.kvm_vm, vcpu };
	t.run = vcpu->run;
	return t;
}

enum stage {
	/* Synced state set by host, e.g. DAT */
	STAGE_INITED,
	/* Guest did nothing */
	STAGE_IDLED,
	/* Guest set storage keys (specifics up to test case) */
	STAGE_SKEYS_SET,
	/* Guest copied memory (locations up to test case) */
	STAGE_COPIED,
	/* End of guest code reached */
	STAGE_DONE,
};

#define HOST_SYNC(info_p, stage)					\
({									\
	struct test_info __info = (info_p);				\
	struct kvm_vcpu *__vcpu = __info.vcpu;				\
	struct ucall uc;						\
	int __stage = (stage);						\
									\
	vcpu_run(__vcpu);						\
	get_ucall(__vcpu, &uc);						\
	if (uc.cmd == UCALL_ABORT) {					\
		REPORT_GUEST_ASSERT_2(uc, "hints: %lu, %lu");		\
	}								\
	ASSERT_EQ(uc.cmd, UCALL_SYNC);					\
	ASSERT_EQ(uc.args[1], __stage);					\
})									\

static void prepare_mem12(void)
{
	int i;

	for (i = 0; i < sizeof(mem1); i++)
		mem1[i] = rand();
	memset(mem2, 0xaa, sizeof(mem2));
}

#define ASSERT_MEM_EQ(p1, p2, size) \
	TEST_ASSERT(!memcmp(p1, p2, size), "Memory contents do not match!")

static void default_write_read(struct test_info copy_cpu, struct test_info mop_cpu,
			       enum mop_target mop_target, uint32_t size, uint8_t key)
{
	prepare_mem12();
	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size,
		   GADDR_V(mem1), KEY(key));
	HOST_SYNC(copy_cpu, STAGE_COPIED);
	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
		   GADDR_V(mem2), KEY(key));
	ASSERT_MEM_EQ(mem1, mem2, size);
}

static void default_read(struct test_info copy_cpu, struct test_info mop_cpu,
			 enum mop_target mop_target, uint32_t size, uint8_t key)
{
	prepare_mem12();
	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size, GADDR_V(mem1));
	HOST_SYNC(copy_cpu, STAGE_COPIED);
	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
		   GADDR_V(mem2), KEY(key));
	ASSERT_MEM_EQ(mem1, mem2, size);
}

static void default_cmpxchg(struct test_default *test, uint8_t key)
{
	for (int size = 1; size <= 16; size *= 2) {
		for (int offset = 0; offset < 16; offset += size) {
			uint8_t __aligned(16) new[16] = {};
			uint8_t __aligned(16) old[16];
			bool succ;

			prepare_mem12();
			default_write_read(test->vcpu, test->vcpu, LOGICAL, 16, NO_KEY);

			memcpy(&old, mem1, 16);
			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
			    size, GADDR_V(mem1 + offset),
			    CMPXCHG_OLD(old + offset),
			    CMPXCHG_SUCCESS(&succ), KEY(key));
			HOST_SYNC(test->vcpu, STAGE_COPIED);
			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
			TEST_ASSERT(succ, "exchange of values should succeed");
			memcpy(mem1 + offset, new + offset, size);
			ASSERT_MEM_EQ(mem1, mem2, 16);

			memcpy(&old, mem1, 16);
			new[offset]++;
			old[offset]++;
			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
			    size, GADDR_V(mem1 + offset),
			    CMPXCHG_OLD(old + offset),
			    CMPXCHG_SUCCESS(&succ), KEY(key));
			HOST_SYNC(test->vcpu, STAGE_COPIED);
			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
			TEST_ASSERT(!succ, "exchange of values should not succeed");
			ASSERT_MEM_EQ(mem1, mem2, 16);
			ASSERT_MEM_EQ(&old, mem1, 16);
		}
	}
}

static void guest_copy(void)
{
	GUEST_SYNC(STAGE_INITED);
	memcpy(&mem2, &mem1, sizeof(mem2));
	GUEST_SYNC(STAGE_COPIED);
}

static void test_copy(void)
{
	struct test_default t = test_default_init(guest_copy);

	HOST_SYNC(t.vcpu, STAGE_INITED);

	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, NO_KEY);

	kvm_vm_free(t.kvm_vm);
}

static void set_storage_key_range(void *addr, size_t len, uint8_t key)
{
	uintptr_t _addr, abs, i;
	int not_mapped = 0;

	_addr = (uintptr_t)addr;
	for (i = _addr & PAGE_MASK; i < _addr + len; i += PAGE_SIZE) {
		abs = i;
		asm volatile (
			       "lra	%[abs], 0(0,%[abs])\n"
			"	jz	0f\n"
			"	llill	%[not_mapped],1\n"
			"	j	1f\n"
			"0:	sske	%[key], %[abs]\n"
			"1:"
			: [abs] "+&a" (abs), [not_mapped] "+r" (not_mapped)
			: [key] "r" (key)
			: "cc"
		);
		GUEST_ASSERT_EQ(not_mapped, 0);
	}
}

static void guest_copy_key(void)
{
	set_storage_key_range(mem1, sizeof(mem1), 0x90);
	set_storage_key_range(mem2, sizeof(mem2), 0x90);
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (;;) {
		memcpy(&mem2, &mem1, sizeof(mem2));
		GUEST_SYNC(STAGE_COPIED);
	}
}

static void test_copy_key(void)
{
	struct test_default t = test_default_init(guest_copy_key);

	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm, no key */
	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, NO_KEY);

	/* vm/vcpu, machting key or key 0 */
	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 0);
	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 0);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
	/*
	 * There used to be different code paths for key handling depending on
	 * if the region crossed a page boundary.
	 * There currently are not, but the more tests the merrier.
	 */
	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 0);
	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 9);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 0);
	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 9);

	/* vm/vcpu, mismatching keys on read, but no fetch protection */
	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 2);

	kvm_vm_free(t.kvm_vm);
}

static void test_cmpxchg_key(void)
{
	struct test_default t = test_default_init(guest_copy_key);

	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	default_cmpxchg(&t, NO_KEY);
	default_cmpxchg(&t, 0);
	default_cmpxchg(&t, 9);

	kvm_vm_free(t.kvm_vm);
}

static __uint128_t cut_to_size(int size, __uint128_t val)
{
	switch (size) {
	case 1:
		return (uint8_t)val;
	case 2:
		return (uint16_t)val;
	case 4:
		return (uint32_t)val;
	case 8:
		return (uint64_t)val;
	case 16:
		return val;
	}
	GUEST_ASSERT_1(false, "Invalid size");
	return 0;
}

static bool popcount_eq(__uint128_t a, __uint128_t b)
{
	unsigned int count_a, count_b;

	count_a = __builtin_popcountl((uint64_t)(a >> 64)) +
		  __builtin_popcountl((uint64_t)a);
	count_b = __builtin_popcountl((uint64_t)(b >> 64)) +
		  __builtin_popcountl((uint64_t)b);
	return count_a == count_b;
}

static __uint128_t rotate(int size, __uint128_t val, int amount)
{
	unsigned int bits = size * 8;

	amount = (amount + bits) % bits;
	val = cut_to_size(size, val);
	return (val << (bits - amount)) | (val >> amount);
}

const unsigned int max_block = 16;

static void choose_block(bool guest, int i, int *size, int *offset)
{
	unsigned int rand;

	rand = i;
	if (guest) {
		rand = rand * 19 + 11;
		*size = 1 << ((rand % 3) + 2);
		rand = rand * 19 + 11;
		*offset = (rand % max_block) & ~(*size - 1);
	} else {
		rand = rand * 17 + 5;
		*size = 1 << (rand % 5);
		rand = rand * 17 + 5;
		*offset = (rand % max_block) & ~(*size - 1);
	}
}

static __uint128_t permutate_bits(bool guest, int i, int size, __uint128_t old)
{
	unsigned int rand;
	int amount;
	bool swap;

	rand = i;
	rand = rand * 3 + 1;
	if (guest)
		rand = rand * 3 + 1;
	swap = rand % 2 == 0;
	if (swap) {
		int i, j;
		__uint128_t new;
		uint8_t byte0, byte1;

		rand = rand * 3 + 1;
		i = rand % size;
		rand = rand * 3 + 1;
		j = rand % size;
		if (i == j)
			return old;
		new = rotate(16, old, i * 8);
		byte0 = new & 0xff;
		new &= ~0xff;
		new = rotate(16, new, -i * 8);
		new = rotate(16, new, j * 8);
		byte1 = new & 0xff;
		new = (new & ~0xff) | byte0;
		new = rotate(16, new, -j * 8);
		new = rotate(16, new, i * 8);
		new = new | byte1;
		new = rotate(16, new, -i * 8);
		return new;
	}
	rand = rand * 3 + 1;
	amount = rand % (size * 8);
	return rotate(size, old, amount);
}

static bool _cmpxchg(int size, void *target, __uint128_t *old_addr, __uint128_t new)
{
	bool ret;

	switch (size) {
	case 4: {
			uint32_t old = *old_addr;

			asm volatile ("cs %[old],%[new],%[address]"
			    : [old] "+d" (old),
			      [address] "+Q" (*(uint32_t *)(target))
			    : [new] "d" ((uint32_t)new)
			    : "cc"
			);
			ret = old == (uint32_t)*old_addr;
			*old_addr = old;
			return ret;
		}
	case 8: {
			uint64_t old = *old_addr;

			asm volatile ("csg %[old],%[new],%[address]"
			    : [old] "+d" (old),
			      [address] "+Q" (*(uint64_t *)(target))
			    : [new] "d" ((uint64_t)new)
			    : "cc"
			);
			ret = old == (uint64_t)*old_addr;
			*old_addr = old;
			return ret;
		}
	case 16: {
			__uint128_t old = *old_addr;

			asm volatile ("cdsg %[old],%[new],%[address]"
			    : [old] "+d" (old),
			      [address] "+Q" (*(__uint128_t *)(target))
			    : [new] "d" (new)
			    : "cc"
			);
			ret = old == *old_addr;
			*old_addr = old;
			return ret;
		}
	}
	GUEST_ASSERT_1(false, "Invalid size");
	return 0;
}

const unsigned int cmpxchg_iter_outer = 100, cmpxchg_iter_inner = 10000;

static void guest_cmpxchg_key(void)
{
	int size, offset;
	__uint128_t old, new;

	set_storage_key_range(mem1, max_block, 0x10);
	set_storage_key_range(mem2, max_block, 0x10);
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (int i = 0; i < cmpxchg_iter_outer; i++) {
		do {
			old = 1;
		} while (!_cmpxchg(16, mem1, &old, 0));
		for (int j = 0; j < cmpxchg_iter_inner; j++) {
			choose_block(true, i + j, &size, &offset);
			do {
				new = permutate_bits(true, i + j, size, old);
			} while (!_cmpxchg(size, mem2 + offset, &old, new));
		}
	}

	GUEST_SYNC(STAGE_DONE);
}

static void *run_guest(void *data)
{
	struct test_info *info = data;

	HOST_SYNC(*info, STAGE_DONE);
	return NULL;
}

static char *quad_to_char(__uint128_t *quad, int size)
{
	return ((char *)quad) + (sizeof(*quad) - size);
}

static void test_cmpxchg_key_concurrent(void)
{
	struct test_default t = test_default_init(guest_cmpxchg_key);
	int size, offset;
	__uint128_t old, new;
	bool success;
	pthread_t thread;

	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
	prepare_mem12();
	MOP(t.vcpu, LOGICAL, WRITE, mem1, max_block, GADDR_V(mem2));
	pthread_create(&thread, NULL, run_guest, &t.vcpu);

	for (int i = 0; i < cmpxchg_iter_outer; i++) {
		do {
			old = 0;
			new = 1;
			MOP(t.vm, ABSOLUTE, CMPXCHG, &new,
			    sizeof(new), GADDR_V(mem1),
			    CMPXCHG_OLD(&old),
			    CMPXCHG_SUCCESS(&success), KEY(1));
		} while (!success);
		for (int j = 0; j < cmpxchg_iter_inner; j++) {
			choose_block(false, i + j, &size, &offset);
			do {
				new = permutate_bits(false, i + j, size, old);
				MOP(t.vm, ABSOLUTE, CMPXCHG, quad_to_char(&new, size),
				    size, GADDR_V(mem2 + offset),
				    CMPXCHG_OLD(quad_to_char(&old, size)),
				    CMPXCHG_SUCCESS(&success), KEY(1));
			} while (!success);
		}
	}

	pthread_join(thread, NULL);

	MOP(t.vcpu, LOGICAL, READ, mem2, max_block, GADDR_V(mem2));
	TEST_ASSERT(popcount_eq(*(__uint128_t *)mem1, *(__uint128_t *)mem2),
		    "Must retain number of set bits");

	kvm_vm_free(t.kvm_vm);
}

static void guest_copy_key_fetch_prot(void)
{
	/*
	 * For some reason combining the first sync with override enablement
	 * results in an exception when calling HOST_SYNC.
	 */
	GUEST_SYNC(STAGE_INITED);
	/* Storage protection override applies to both store and fetch. */
	set_storage_key_range(mem1, sizeof(mem1), 0x98);
	set_storage_key_range(mem2, sizeof(mem2), 0x98);
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (;;) {
		memcpy(&mem2, &mem1, sizeof(mem2));
		GUEST_SYNC(STAGE_COPIED);
	}
}

static void test_copy_key_storage_prot_override(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys, storage protection override in effect */
	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);

	kvm_vm_free(t.kvm_vm);
}

static void test_copy_key_fetch_prot(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm/vcpu, matching key, fetch protection in effect */
	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);

	kvm_vm_free(t.kvm_vm);
}

#define ERR_PROT_MOP(...)							\
({										\
	int rv;									\
										\
	rv = ERR_MOP(__VA_ARGS__);						\
	TEST_ASSERT(rv == 4, "Should result in protection exception");		\
})

static void guest_error_key(void)
{
	GUEST_SYNC(STAGE_INITED);
	set_storage_key_range(mem1, PAGE_SIZE, 0x18);
	set_storage_key_range(mem1 + PAGE_SIZE, sizeof(mem1) - PAGE_SIZE, 0x98);
	GUEST_SYNC(STAGE_SKEYS_SET);
	GUEST_SYNC(STAGE_IDLED);
}

static void test_errors_key(void)
{
	struct test_default t = test_default_init(guest_error_key);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm/vcpu, mismatching keys, fetch protection in effect */
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem1), KEY(2));

	kvm_vm_free(t.kvm_vm);
}

static void test_errors_cmpxchg_key(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
	int i;

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	for (i = 1; i <= 16; i *= 2) {
		__uint128_t old = 0;

		ERR_PROT_MOP(t.vm, ABSOLUTE, CMPXCHG, mem2, i, GADDR_V(mem2),
			     CMPXCHG_OLD(&old), KEY(2));
	}

	kvm_vm_free(t.kvm_vm);
}

static void test_termination(void)
{
	struct test_default t = test_default_init(guest_error_key);
	uint64_t prefix;
	uint64_t teid;
	uint64_t teid_mask = BIT(63 - 56) | BIT(63 - 60) | BIT(63 - 61);
	uint64_t psw[2];

	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys after first page */
	ERR_PROT_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(1), INJECT);
	/*
	 * The memop injected a program exception and the test needs to check the
	 * Translation-Exception Identification (TEID). It is necessary to run
	 * the guest in order to be able to read the TEID from guest memory.
	 * Set the guest program new PSW, so the guest state is not clobbered.
	 */
	prefix = t.run->s.regs.prefix;
	psw[0] = t.run->psw_mask;
	psw[1] = t.run->psw_addr;
	MOP(t.vm, ABSOLUTE, WRITE, psw, sizeof(psw), GADDR(prefix + 464));
	HOST_SYNC(t.vcpu, STAGE_IDLED);
	MOP(t.vm, ABSOLUTE, READ, &teid, sizeof(teid), GADDR(prefix + 168));
	/* Bits 56, 60, 61 form a code, 0 being the only one allowing for termination */
	ASSERT_EQ(teid & teid_mask, 0);

	kvm_vm_free(t.kvm_vm);
}

static void test_errors_key_storage_prot_override(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot);

	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vm, mismatching keys, storage protection override not applicable to vm */
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2));

	kvm_vm_free(t.kvm_vm);
}

const uint64_t last_page_addr = -PAGE_SIZE;

static void guest_copy_key_fetch_prot_override(void)
{
	int i;
	char *page_0 = 0;

	GUEST_SYNC(STAGE_INITED);
	set_storage_key_range(0, PAGE_SIZE, 0x18);
	set_storage_key_range((void *)last_page_addr, PAGE_SIZE, 0x0);
	asm volatile ("sske %[key],%[addr]\n" :: [addr] "r"(0L), [key] "r"(0x18) : "cc");
	GUEST_SYNC(STAGE_SKEYS_SET);

	for (;;) {
		for (i = 0; i < PAGE_SIZE; i++)
			page_0[i] = mem1[i];
		GUEST_SYNC(STAGE_COPIED);
	}
}

static void test_copy_key_fetch_prot_override(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
	vm_vaddr_t guest_0_page, guest_last_page;

	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
		print_skip("did not allocate guest pages at required positions");
		goto out;
	}

	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys on fetch, fetch protection override applies */
	prepare_mem12();
	MOP(t.vcpu, LOGICAL, WRITE, mem1, PAGE_SIZE, GADDR_V(mem1));
	HOST_SYNC(t.vcpu, STAGE_COPIED);
	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
	ASSERT_MEM_EQ(mem1, mem2, 2048);

	/*
	 * vcpu, mismatching keys on fetch, fetch protection override applies,
	 * wraparound
	 */
	prepare_mem12();
	MOP(t.vcpu, LOGICAL, WRITE, mem1, 2 * PAGE_SIZE, GADDR_V(guest_last_page));
	HOST_SYNC(t.vcpu, STAGE_COPIED);
	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048,
		   GADDR_V(guest_last_page), KEY(2));
	ASSERT_MEM_EQ(mem1, mem2, 2048);

out:
	kvm_vm_free(t.kvm_vm);
}

static void test_errors_key_fetch_prot_override_not_enabled(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
	vm_vaddr_t guest_0_page, guest_last_page;

	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
		print_skip("did not allocate guest pages at required positions");
		goto out;
	}
	HOST_SYNC(t.vcpu, STAGE_INITED);
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/* vcpu, mismatching keys on fetch, fetch protection override not enabled */
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(0), KEY(2));

out:
	kvm_vm_free(t.kvm_vm);
}

static void test_errors_key_fetch_prot_override_enabled(void)
{
	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
	vm_vaddr_t guest_0_page, guest_last_page;

	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
		print_skip("did not allocate guest pages at required positions");
		goto out;
	}
	HOST_SYNC(t.vcpu, STAGE_INITED);
	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);

	/*
	 * vcpu, mismatching keys on fetch,
	 * fetch protection override does not apply because memory range exceeded
	 */
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048 + 1, GADDR_V(0), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048 + 1,
		   GADDR_V(guest_last_page), KEY(2));
	/* vm, fetch protected override does not apply */
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR(0), KEY(2));
	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));

out:
	kvm_vm_free(t.kvm_vm);
}

static void guest_idle(void)
{
	GUEST_SYNC(STAGE_INITED); /* for consistency's sake */
	for (;;)
		GUEST_SYNC(STAGE_IDLED);
}

static void _test_errors_common(struct test_info info, enum mop_target target, int size)
{
	int rv;

	/* Bad size: */
	rv = ERR_MOP(info, target, WRITE, mem1, -1, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && errno == E2BIG, "ioctl allows insane sizes");

	/* Zero size: */
	rv = ERR_MOP(info, target, WRITE, mem1, 0, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && (errno == EINVAL || errno == ENOMEM),
		    "ioctl allows 0 as size");

	/* Bad flags: */
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), SET_FLAGS(-1));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows all flags");

	/* Bad guest address: */
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL), CHECK_ONLY);
	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address with CHECK_ONLY");
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL));
	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address on write");

	/* Bad host address: */
	rv = ERR_MOP(info, target, WRITE, 0, size, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && errno == EFAULT,
		    "ioctl does not report bad host memory address");

	/* Bad key: */
	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), KEY(17));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows invalid key");
}

static void test_errors(void)
{
	struct test_default t = test_default_init(guest_idle);
	int rv;

	HOST_SYNC(t.vcpu, STAGE_INITED);

	_test_errors_common(t.vcpu, LOGICAL, t.size);
	_test_errors_common(t.vm, ABSOLUTE, t.size);

	/* Bad operation: */
	rv = ERR_MOP(t.vcpu, INVALID, WRITE, mem1, t.size, GADDR_V(mem1));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
	/* virtual addresses are not translated when passing INVALID */
	rv = ERR_MOP(t.vm, INVALID, WRITE, mem1, PAGE_SIZE, GADDR(0));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");

	/* Bad access register: */
	t.run->psw_mask &= ~(3UL << (63 - 17));
	t.run->psw_mask |= 1UL << (63 - 17);  /* Enable AR mode */
	HOST_SYNC(t.vcpu, STAGE_IDLED); /* To sync new state to SIE block */
	rv = ERR_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), AR(17));
	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows ARs > 15");
	t.run->psw_mask &= ~(3UL << (63 - 17));   /* Disable AR mode */
	HOST_SYNC(t.vcpu, STAGE_IDLED); /* Run to sync new state */

	/* Check that the SIDA calls are rejected for non-protected guests */
	rv = ERR_MOP(t.vcpu, SIDA, READ, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
	TEST_ASSERT(rv == -1 && errno == EINVAL,
		    "ioctl does not reject SIDA_READ in non-protected mode");
	rv = ERR_MOP(t.vcpu, SIDA, WRITE, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
	TEST_ASSERT(rv == -1 && errno == EINVAL,
		    "ioctl does not reject SIDA_WRITE in non-protected mode");

	kvm_vm_free(t.kvm_vm);
}

static void test_errors_cmpxchg(void)
{
	struct test_default t = test_default_init(guest_idle);
	__uint128_t old;
	int rv, i, power = 1;

	HOST_SYNC(t.vcpu, STAGE_INITED);

	for (i = 0; i < 32; i++) {
		if (i == power) {
			power *= 2;
			continue;
		}
		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1),
			     CMPXCHG_OLD(&old));
		TEST_ASSERT(rv == -1 && errno == EINVAL,
			    "ioctl allows bad size for cmpxchg");
	}
	for (i = 1; i <= 16; i *= 2) {
		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR((void *)~0xfffUL),
			     CMPXCHG_OLD(&old));
		TEST_ASSERT(rv > 0, "ioctl allows bad guest address for cmpxchg");
	}
	for (i = 2; i <= 16; i *= 2) {
		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1 + 1),
			     CMPXCHG_OLD(&old));
		TEST_ASSERT(rv == -1 && errno == EINVAL,
			    "ioctl allows bad alignment for cmpxchg");
	}

	kvm_vm_free(t.kvm_vm);
}

int main(int argc, char *argv[])
{
	int extension_cap, idx;

	TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_MEM_OP));
	extension_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP_EXTENSION);

	struct testdef {
		const char *name;
		void (*test)(void);
		bool requirements_met;
	} testlist[] = {
		{
			.name = "simple copy",
			.test = test_copy,
			.requirements_met = true,
		},
		{
			.name = "generic error checks",
			.test = test_errors,
			.requirements_met = true,
		},
		{
			.name = "copy with storage keys",
			.test = test_copy_key,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "cmpxchg with storage keys",
			.test = test_cmpxchg_key,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "concurrently cmpxchg with storage keys",
			.test = test_cmpxchg_key_concurrent,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "copy with key storage protection override",
			.test = test_copy_key_storage_prot_override,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "copy with key fetch protection",
			.test = test_copy_key_fetch_prot,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "copy with key fetch protection override",
			.test = test_copy_key_fetch_prot_override,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks with key",
			.test = test_errors_key,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks for cmpxchg with key",
			.test = test_errors_cmpxchg_key,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "error checks for cmpxchg",
			.test = test_errors_cmpxchg,
			.requirements_met = extension_cap & 0x2,
		},
		{
			.name = "termination",
			.test = test_termination,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks with key storage protection override",
			.test = test_errors_key_storage_prot_override,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks without key fetch prot override",
			.test = test_errors_key_fetch_prot_override_not_enabled,
			.requirements_met = extension_cap > 0,
		},
		{
			.name = "error checks with key fetch prot override",
			.test = test_errors_key_fetch_prot_override_enabled,
			.requirements_met = extension_cap > 0,
		},
	};

	ksft_print_header();
	ksft_set_plan(ARRAY_SIZE(testlist));

	for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
		if (testlist[idx].requirements_met) {
			testlist[idx].test();
			ksft_test_result_pass("%s\n", testlist[idx].name);
		} else {
			ksft_test_result_skip("%s - requirements not met (kernel has extension cap %#x)\n",
					      testlist[idx].name, extension_cap);
		}
	}

	ksft_finished();	/* Print results and exit() accordingly */
}