Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | // SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2020 ARM Limited #define _GNU_SOURCE #include <stddef.h> #include <stdio.h> #include <string.h> #include "kselftest.h" #include "mte_common_util.h" #include "mte_def.h" #define OVERFLOW_RANGE MT_GRANULE_SIZE static int sizes[] = { 1, 555, 1033, MT_GRANULE_SIZE - 1, MT_GRANULE_SIZE, /* page size - 1*/ 0, /* page_size */ 0, /* page size + 1 */ 0 }; enum mte_block_test_alloc { UNTAGGED_TAGGED, TAGGED_UNTAGGED, TAGGED_TAGGED, BLOCK_ALLOC_MAX, }; static int check_buffer_by_byte(int mem_type, int mode) { char *ptr; int i, j, item; bool err; mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG); item = ARRAY_SIZE(sizes); for (i = 0; i < item; i++) { ptr = (char *)mte_allocate_memory(sizes[i], mem_type, 0, true); if (check_allocated_memory(ptr, sizes[i], mem_type, true) != KSFT_PASS) return KSFT_FAIL; mte_initialize_current_context(mode, (uintptr_t)ptr, sizes[i]); /* Set some value in tagged memory */ for (j = 0; j < sizes[i]; j++) ptr[j] = '1'; mte_wait_after_trig(); err = cur_mte_cxt.fault_valid; /* Check the buffer whether it is filled. */ for (j = 0; j < sizes[i] && !err; j++) { if (ptr[j] != '1') err = true; } mte_free_memory((void *)ptr, sizes[i], mem_type, true); if (err) break; } if (!err) return KSFT_PASS; else return KSFT_FAIL; } static int check_buffer_underflow_by_byte(int mem_type, int mode, int underflow_range) { char *ptr; int i, j, item, last_index; bool err; char *und_ptr = NULL; mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG); item = ARRAY_SIZE(sizes); for (i = 0; i < item; i++) { ptr = (char *)mte_allocate_memory_tag_range(sizes[i], mem_type, 0, underflow_range, 0); if (check_allocated_memory_range(ptr, sizes[i], mem_type, underflow_range, 0) != KSFT_PASS) return KSFT_FAIL; mte_initialize_current_context(mode, (uintptr_t)ptr, -underflow_range); last_index = 0; /* Set some value in tagged memory and make the buffer underflow */ for (j = sizes[i] - 1; (j >= -underflow_range) && (!cur_mte_cxt.fault_valid); j--) { ptr[j] = '1'; last_index = j; } mte_wait_after_trig(); err = false; /* Check whether the buffer is filled */ for (j = 0; j < sizes[i]; j++) { if (ptr[j] != '1') { err = true; ksft_print_msg("Buffer is not filled at index:%d of ptr:0x%lx\n", j, ptr); break; } } if (err) goto check_buffer_underflow_by_byte_err; switch (mode) { case MTE_NONE_ERR: if (cur_mte_cxt.fault_valid == true || last_index != -underflow_range) { err = true; break; } /* There were no fault so the underflow area should be filled */ und_ptr = (char *) MT_CLEAR_TAG((size_t) ptr - underflow_range); for (j = 0 ; j < underflow_range; j++) { if (und_ptr[j] != '1') { err = true; break; } } break; case MTE_ASYNC_ERR: /* Imprecise fault should occur otherwise return error */ if (cur_mte_cxt.fault_valid == false) { err = true; break; } /* * The imprecise fault is checked after the write to the buffer, * so the underflow area before the fault should be filled. */ und_ptr = (char *) MT_CLEAR_TAG((size_t) ptr); for (j = last_index ; j < 0 ; j++) { if (und_ptr[j] != '1') { err = true; break; } } break; case MTE_SYNC_ERR: /* Precise fault should occur otherwise return error */ if (!cur_mte_cxt.fault_valid || (last_index != (-1))) { err = true; break; } /* Underflow area should not be filled */ und_ptr = (char *) MT_CLEAR_TAG((size_t) ptr); if (und_ptr[-1] == '1') err = true; break; default: err = true; break; } check_buffer_underflow_by_byte_err: mte_free_memory_tag_range((void *)ptr, sizes[i], mem_type, underflow_range, 0); if (err) break; } return (err ? KSFT_FAIL : KSFT_PASS); } static int check_buffer_overflow_by_byte(int mem_type, int mode, int overflow_range) { char *ptr; int i, j, item, last_index; bool err; size_t tagged_size, overflow_size; char *over_ptr = NULL; mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG); item = ARRAY_SIZE(sizes); for (i = 0; i < item; i++) { ptr = (char *)mte_allocate_memory_tag_range(sizes[i], mem_type, 0, 0, overflow_range); if (check_allocated_memory_range(ptr, sizes[i], mem_type, 0, overflow_range) != KSFT_PASS) return KSFT_FAIL; tagged_size = MT_ALIGN_UP(sizes[i]); mte_initialize_current_context(mode, (uintptr_t)ptr, sizes[i] + overflow_range); /* Set some value in tagged memory and make the buffer underflow */ for (j = 0, last_index = 0 ; (j < (sizes[i] + overflow_range)) && (cur_mte_cxt.fault_valid == false); j++) { ptr[j] = '1'; last_index = j; } mte_wait_after_trig(); err = false; /* Check whether the buffer is filled */ for (j = 0; j < sizes[i]; j++) { if (ptr[j] != '1') { err = true; ksft_print_msg("Buffer is not filled at index:%d of ptr:0x%lx\n", j, ptr); break; } } if (err) goto check_buffer_overflow_by_byte_err; overflow_size = overflow_range - (tagged_size - sizes[i]); switch (mode) { case MTE_NONE_ERR: if ((cur_mte_cxt.fault_valid == true) || (last_index != (sizes[i] + overflow_range - 1))) { err = true; break; } /* There were no fault so the overflow area should be filled */ over_ptr = (char *) MT_CLEAR_TAG((size_t) ptr + tagged_size); for (j = 0 ; j < overflow_size; j++) { if (over_ptr[j] != '1') { err = true; break; } } break; case MTE_ASYNC_ERR: /* Imprecise fault should occur otherwise return error */ if (cur_mte_cxt.fault_valid == false) { err = true; break; } /* * The imprecise fault is checked after the write to the buffer, * so the overflow area should be filled before the fault. */ over_ptr = (char *) MT_CLEAR_TAG((size_t) ptr); for (j = tagged_size ; j < last_index; j++) { if (over_ptr[j] != '1') { err = true; break; } } break; case MTE_SYNC_ERR: /* Precise fault should occur otherwise return error */ if (!cur_mte_cxt.fault_valid || (last_index != tagged_size)) { err = true; break; } /* Underflow area should not be filled */ over_ptr = (char *) MT_CLEAR_TAG((size_t) ptr + tagged_size); for (j = 0 ; j < overflow_size; j++) { if (over_ptr[j] == '1') err = true; } break; default: err = true; break; } check_buffer_overflow_by_byte_err: mte_free_memory_tag_range((void *)ptr, sizes[i], mem_type, 0, overflow_range); if (err) break; } return (err ? KSFT_FAIL : KSFT_PASS); } static int check_buffer_by_block_iterate(int mem_type, int mode, size_t size) { char *src, *dst; int j, result = KSFT_PASS; enum mte_block_test_alloc alloc_type = UNTAGGED_TAGGED; for (alloc_type = UNTAGGED_TAGGED; alloc_type < (int) BLOCK_ALLOC_MAX; alloc_type++) { switch (alloc_type) { case UNTAGGED_TAGGED: src = (char *)mte_allocate_memory(size, mem_type, 0, false); if (check_allocated_memory(src, size, mem_type, false) != KSFT_PASS) return KSFT_FAIL; dst = (char *)mte_allocate_memory(size, mem_type, 0, true); if (check_allocated_memory(dst, size, mem_type, true) != KSFT_PASS) { mte_free_memory((void *)src, size, mem_type, false); return KSFT_FAIL; } break; case TAGGED_UNTAGGED: dst = (char *)mte_allocate_memory(size, mem_type, 0, false); if (check_allocated_memory(dst, size, mem_type, false) != KSFT_PASS) return KSFT_FAIL; src = (char *)mte_allocate_memory(size, mem_type, 0, true); if (check_allocated_memory(src, size, mem_type, true) != KSFT_PASS) { mte_free_memory((void *)dst, size, mem_type, false); return KSFT_FAIL; } break; case TAGGED_TAGGED: src = (char *)mte_allocate_memory(size, mem_type, 0, true); if (check_allocated_memory(src, size, mem_type, true) != KSFT_PASS) return KSFT_FAIL; dst = (char *)mte_allocate_memory(size, mem_type, 0, true); if (check_allocated_memory(dst, size, mem_type, true) != KSFT_PASS) { mte_free_memory((void *)src, size, mem_type, true); return KSFT_FAIL; } break; default: return KSFT_FAIL; } cur_mte_cxt.fault_valid = false; result = KSFT_PASS; mte_initialize_current_context(mode, (uintptr_t)dst, size); /* Set some value in memory and copy*/ memset((void *)src, (int)'1', size); memcpy((void *)dst, (void *)src, size); mte_wait_after_trig(); if (cur_mte_cxt.fault_valid) { result = KSFT_FAIL; goto check_buffer_by_block_err; } /* Check the buffer whether it is filled. */ for (j = 0; j < size; j++) { if (src[j] != dst[j] || src[j] != '1') { result = KSFT_FAIL; break; } } check_buffer_by_block_err: mte_free_memory((void *)src, size, mem_type, MT_FETCH_TAG((uintptr_t)src) ? true : false); mte_free_memory((void *)dst, size, mem_type, MT_FETCH_TAG((uintptr_t)dst) ? true : false); if (result != KSFT_PASS) return result; } return result; } static int check_buffer_by_block(int mem_type, int mode) { int i, item, result = KSFT_PASS; mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG); item = ARRAY_SIZE(sizes); cur_mte_cxt.fault_valid = false; for (i = 0; i < item; i++) { result = check_buffer_by_block_iterate(mem_type, mode, sizes[i]); if (result != KSFT_PASS) break; } return result; } static int compare_memory_tags(char *ptr, size_t size, int tag) { int i, new_tag; for (i = 0 ; i < size ; i += MT_GRANULE_SIZE) { new_tag = MT_FETCH_TAG((uintptr_t)(mte_get_tag_address(ptr + i))); if (tag != new_tag) { ksft_print_msg("FAIL: child mte tag mismatch\n"); return KSFT_FAIL; } } return KSFT_PASS; } static int check_memory_initial_tags(int mem_type, int mode, int mapping) { char *ptr; int run, fd; int total = ARRAY_SIZE(sizes); mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG); for (run = 0; run < total; run++) { /* check initial tags for anonymous mmap */ ptr = (char *)mte_allocate_memory(sizes[run], mem_type, mapping, false); if (check_allocated_memory(ptr, sizes[run], mem_type, false) != KSFT_PASS) return KSFT_FAIL; if (compare_memory_tags(ptr, sizes[run], 0) != KSFT_PASS) { mte_free_memory((void *)ptr, sizes[run], mem_type, false); return KSFT_FAIL; } mte_free_memory((void *)ptr, sizes[run], mem_type, false); /* check initial tags for file mmap */ fd = create_temp_file(); if (fd == -1) return KSFT_FAIL; ptr = (char *)mte_allocate_file_memory(sizes[run], mem_type, mapping, false, fd); if (check_allocated_memory(ptr, sizes[run], mem_type, false) != KSFT_PASS) { close(fd); return KSFT_FAIL; } if (compare_memory_tags(ptr, sizes[run], 0) != KSFT_PASS) { mte_free_memory((void *)ptr, sizes[run], mem_type, false); close(fd); return KSFT_FAIL; } mte_free_memory((void *)ptr, sizes[run], mem_type, false); close(fd); } return KSFT_PASS; } int main(int argc, char *argv[]) { int err; size_t page_size = getpagesize(); int item = ARRAY_SIZE(sizes); sizes[item - 3] = page_size - 1; sizes[item - 2] = page_size; sizes[item - 1] = page_size + 1; err = mte_default_setup(); if (err) return err; /* Register SIGSEGV handler */ mte_register_signal(SIGSEGV, mte_default_handler); /* Set test plan */ ksft_set_plan(20); /* Buffer by byte tests */ evaluate_test(check_buffer_by_byte(USE_MMAP, MTE_SYNC_ERR), "Check buffer correctness by byte with sync err mode and mmap memory\n"); evaluate_test(check_buffer_by_byte(USE_MMAP, MTE_ASYNC_ERR), "Check buffer correctness by byte with async err mode and mmap memory\n"); evaluate_test(check_buffer_by_byte(USE_MPROTECT, MTE_SYNC_ERR), "Check buffer correctness by byte with sync err mode and mmap/mprotect memory\n"); evaluate_test(check_buffer_by_byte(USE_MPROTECT, MTE_ASYNC_ERR), "Check buffer correctness by byte with async err mode and mmap/mprotect memory\n"); /* Check buffer underflow with underflow size as 16 */ evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_SYNC_ERR, MT_GRANULE_SIZE), "Check buffer write underflow by byte with sync mode and mmap memory\n"); evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_ASYNC_ERR, MT_GRANULE_SIZE), "Check buffer write underflow by byte with async mode and mmap memory\n"); evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_NONE_ERR, MT_GRANULE_SIZE), "Check buffer write underflow by byte with tag check fault ignore and mmap memory\n"); /* Check buffer underflow with underflow size as page size */ evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_SYNC_ERR, page_size), "Check buffer write underflow by byte with sync mode and mmap memory\n"); evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_ASYNC_ERR, page_size), "Check buffer write underflow by byte with async mode and mmap memory\n"); evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_NONE_ERR, page_size), "Check buffer write underflow by byte with tag check fault ignore and mmap memory\n"); /* Check buffer overflow with overflow size as 16 */ evaluate_test(check_buffer_overflow_by_byte(USE_MMAP, MTE_SYNC_ERR, MT_GRANULE_SIZE), "Check buffer write overflow by byte with sync mode and mmap memory\n"); evaluate_test(check_buffer_overflow_by_byte(USE_MMAP, MTE_ASYNC_ERR, MT_GRANULE_SIZE), "Check buffer write overflow by byte with async mode and mmap memory\n"); evaluate_test(check_buffer_overflow_by_byte(USE_MMAP, MTE_NONE_ERR, MT_GRANULE_SIZE), "Check buffer write overflow by byte with tag fault ignore mode and mmap memory\n"); /* Buffer by block tests */ evaluate_test(check_buffer_by_block(USE_MMAP, MTE_SYNC_ERR), "Check buffer write correctness by block with sync mode and mmap memory\n"); evaluate_test(check_buffer_by_block(USE_MMAP, MTE_ASYNC_ERR), "Check buffer write correctness by block with async mode and mmap memory\n"); evaluate_test(check_buffer_by_block(USE_MMAP, MTE_NONE_ERR), "Check buffer write correctness by block with tag fault ignore and mmap memory\n"); /* Initial tags are supposed to be 0 */ evaluate_test(check_memory_initial_tags(USE_MMAP, MTE_SYNC_ERR, MAP_PRIVATE), "Check initial tags with private mapping, sync error mode and mmap memory\n"); evaluate_test(check_memory_initial_tags(USE_MPROTECT, MTE_SYNC_ERR, MAP_PRIVATE), "Check initial tags with private mapping, sync error mode and mmap/mprotect memory\n"); evaluate_test(check_memory_initial_tags(USE_MMAP, MTE_SYNC_ERR, MAP_SHARED), "Check initial tags with shared mapping, sync error mode and mmap memory\n"); evaluate_test(check_memory_initial_tags(USE_MPROTECT, MTE_SYNC_ERR, MAP_SHARED), "Check initial tags with shared mapping, sync error mode and mmap/mprotect memory\n"); mte_restore_setup(); ksft_print_cnts(); return ksft_get_fail_cnt() == 0 ? KSFT_PASS : KSFT_FAIL; } |