Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// SPDX-License-Identifier: GPL-2.0-only
/*
 * These are the two Sharp GP2AP002 variants supported by this driver:
 * GP2AP002A00F Ambient Light and Proximity Sensor
 * GP2AP002S00F Proximity Sensor
 *
 * Copyright (C) 2020 Linaro Ltd.
 * Author: Linus Walleij <linus.walleij@linaro.org>
 *
 * Based partly on the code in Sony Ericssons GP2AP00200F driver by
 * Courtney Cavin and Oskar Andero in drivers/input/misc/gp2ap002a00f.c
 * Based partly on a Samsung misc driver submitted by
 * Donggeun Kim & Minkyu Kang in 2011:
 * https://lore.kernel.org/lkml/1315556546-7445-1-git-send-email-dg77.kim@samsung.com/
 * Based partly on a submission by
 * Jonathan Bakker and Paweł Chmiel in january 2019:
 * https://lore.kernel.org/linux-input/20190125175045.22576-1-pawel.mikolaj.chmiel@gmail.com/
 * Based partly on code from the Samsung GT-S7710 by <mjchen@sta.samsung.com>
 * Based partly on the code in LG Electronics GP2AP00200F driver by
 * Kenobi Lee <sungyoung.lee@lge.com> and EunYoung Cho <ey.cho@lge.com>
 */
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
#include <linux/iio/consumer.h> /* To get our ADC channel */
#include <linux/iio/types.h> /* To deal with our ADC channel */
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/bits.h>
#include <linux/math64.h>
#include <linux/pm.h>

#define GP2AP002_PROX_CHANNEL 0
#define GP2AP002_ALS_CHANNEL 1

/* ------------------------------------------------------------------------ */
/* ADDRESS SYMBOL             DATA                                 Init R/W */
/*                   D7    D6    D5    D4    D3    D2    D1    D0           */
/* ------------------------------------------------------------------------ */
/*    0      PROX     X     X     X     X     X     X     X    VO  H'00   R */
/*    1      GAIN     X     X     X     X  LED0     X     X     X  H'00   W */
/*    2       HYS  HYSD HYSC1 HYSC0     X HYSF3 HYSF2 HYSF1 HYSF0  H'00   W */
/*    3     CYCLE     X     X CYCL2 CYCL1 CYCL0  OSC2     X     X  H'00   W */
/*    4     OPMOD     X     X     X   ASD     X     X  VCON   SSD  H'00   W */
/*    6       CON     X     X     X OCON1 OCON0     X     X     X  H'00   W */
/* ------------------------------------------------------------------------ */
/* VO   :Proximity sensing result(0: no detection, 1: detection)            */
/* LED0 :Select switch for LED driver's On-registence(0:2x higher, 1:normal)*/
/* HYSD/HYSF :Adjusts the receiver sensitivity                              */
/* OSC  :Select switch internal clocl frequency hoppling(0:effective)       */
/* CYCL :Determine the detection cycle(typically 8ms, up to 128x)           */
/* SSD  :Software Shutdown function(0:shutdown, 1:operating)                */
/* VCON :VOUT output method control(0:normal, 1:interrupt)                  */
/* ASD  :Select switch for analog sleep function(0:ineffective, 1:effective)*/
/* OCON :Select switch for enabling/disabling VOUT (00:enable, 11:disable)  */

#define GP2AP002_PROX				0x00
#define GP2AP002_GAIN				0x01
#define GP2AP002_HYS				0x02
#define GP2AP002_CYCLE				0x03
#define GP2AP002_OPMOD				0x04
#define GP2AP002_CON				0x06

#define GP2AP002_PROX_VO_DETECT			BIT(0)

/* Setting this bit to 0 means 2x higher LED resistance */
#define GP2AP002_GAIN_LED_NORMAL		BIT(3)

/*
 * These bits adjusts the proximity sensitivity, determining characteristics
 * of the detection distance and its hysteresis.
 */
#define GP2AP002_HYS_HYSD_SHIFT		7
#define GP2AP002_HYS_HYSD_MASK		BIT(7)
#define GP2AP002_HYS_HYSC_SHIFT		5
#define GP2AP002_HYS_HYSC_MASK		GENMASK(6, 5)
#define GP2AP002_HYS_HYSF_SHIFT		0
#define GP2AP002_HYS_HYSF_MASK		GENMASK(3, 0)
#define GP2AP002_HYS_MASK		(GP2AP002_HYS_HYSD_MASK | \
					 GP2AP002_HYS_HYSC_MASK | \
					 GP2AP002_HYS_HYSF_MASK)

/*
 * These values determine the detection cycle response time
 * 0: 8ms, 1: 16ms, 2: 32ms, 3: 64ms, 4: 128ms,
 * 5: 256ms, 6: 512ms, 7: 1024ms
 */
#define GP2AP002_CYCLE_CYCL_SHIFT	3
#define GP2AP002_CYCLE_CYCL_MASK	GENMASK(5, 3)

/*
 * Select switch for internal clock frequency hopping
 *	0: effective,
 *	1: ineffective
 */
#define GP2AP002_CYCLE_OSC_EFFECTIVE	0
#define GP2AP002_CYCLE_OSC_INEFFECTIVE	BIT(2)
#define GP2AP002_CYCLE_OSC_MASK		BIT(2)

/* Analog sleep effective */
#define GP2AP002_OPMOD_ASD		BIT(4)
/* Enable chip */
#define GP2AP002_OPMOD_SSD_OPERATING	BIT(0)
/* IRQ mode */
#define GP2AP002_OPMOD_VCON_IRQ		BIT(1)
#define GP2AP002_OPMOD_MASK		(BIT(0) | BIT(1) | BIT(4))

/*
 * Select switch for enabling/disabling Vout pin
 * 0: enable
 * 2: force to go Low
 * 3: force to go High
 */
#define GP2AP002_CON_OCON_SHIFT		3
#define GP2AP002_CON_OCON_ENABLE	(0x0 << GP2AP002_CON_OCON_SHIFT)
#define GP2AP002_CON_OCON_LOW		(0x2 << GP2AP002_CON_OCON_SHIFT)
#define GP2AP002_CON_OCON_HIGH		(0x3 << GP2AP002_CON_OCON_SHIFT)
#define GP2AP002_CON_OCON_MASK		(0x3 << GP2AP002_CON_OCON_SHIFT)

/**
 * struct gp2ap002 - GP2AP002 state
 * @map: regmap pointer for the i2c regmap
 * @dev: pointer to parent device
 * @vdd: regulator controlling VDD
 * @vio: regulator controlling VIO
 * @alsout: IIO ADC channel to convert the ALSOUT signal
 * @hys_far: hysteresis control from device tree
 * @hys_close: hysteresis control from device tree
 * @is_gp2ap002s00f: this is the GP2AP002F variant of the chip
 * @irq: the IRQ line used by this device
 * @enabled: we cannot read the status of the hardware so we need to
 * keep track of whether the event is enabled using this state variable
 */
struct gp2ap002 {
	struct regmap *map;
	struct device *dev;
	struct regulator *vdd;
	struct regulator *vio;
	struct iio_channel *alsout;
	u8 hys_far;
	u8 hys_close;
	bool is_gp2ap002s00f;
	int irq;
	bool enabled;
};

static irqreturn_t gp2ap002_prox_irq(int irq, void *d)
{
	struct iio_dev *indio_dev = d;
	struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
	u64 ev;
	int val;
	int ret;

	if (!gp2ap002->enabled)
		goto err_retrig;

	ret = regmap_read(gp2ap002->map, GP2AP002_PROX, &val);
	if (ret) {
		dev_err(gp2ap002->dev, "error reading proximity\n");
		goto err_retrig;
	}

	if (val & GP2AP002_PROX_VO_DETECT) {
		/* Close */
		dev_dbg(gp2ap002->dev, "close\n");
		ret = regmap_write(gp2ap002->map, GP2AP002_HYS,
				   gp2ap002->hys_far);
		if (ret)
			dev_err(gp2ap002->dev,
				"error setting up proximity hysteresis\n");
		ev = IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, GP2AP002_PROX_CHANNEL,
					IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING);
	} else {
		/* Far */
		dev_dbg(gp2ap002->dev, "far\n");
		ret = regmap_write(gp2ap002->map, GP2AP002_HYS,
				   gp2ap002->hys_close);
		if (ret)
			dev_err(gp2ap002->dev,
				"error setting up proximity hysteresis\n");
		ev = IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, GP2AP002_PROX_CHANNEL,
					IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING);
	}
	iio_push_event(indio_dev, ev, iio_get_time_ns(indio_dev));

	/*
	 * After changing hysteresis, we need to wait for one detection
	 * cycle to see if anything changed, or we will just trigger the
	 * previous interrupt again. A detection cycle depends on the CYCLE
	 * register, we are hard-coding ~8 ms in probe() so wait some more
	 * than this, 20-30 ms.
	 */
	usleep_range(20000, 30000);

err_retrig:
	ret = regmap_write(gp2ap002->map, GP2AP002_CON,
			   GP2AP002_CON_OCON_ENABLE);
	if (ret)
		dev_err(gp2ap002->dev, "error setting up VOUT control\n");

	return IRQ_HANDLED;
}

/*
 * This array maps current and lux.
 *
 * Ambient light sensing range is 3 to 55000 lux.
 *
 * This mapping is based on the following formula.
 * illuminance = 10 ^ (current[mA] / 10)
 *
 * When the ADC measures 0, return 0 lux.
 */
static const u16 gp2ap002_illuminance_table[] = {
	0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 63, 79,
	100, 126, 158, 200, 251, 316, 398, 501, 631, 794, 1000, 1259, 1585,
	1995, 2512, 3162, 3981, 5012, 6310, 7943, 10000, 12589, 15849, 19953,
	25119, 31623, 39811, 50119,
};

static int gp2ap002_get_lux(struct gp2ap002 *gp2ap002)
{
	int ret, res;
	u16 lux;

	ret = iio_read_channel_processed(gp2ap002->alsout, &res);
	if (ret < 0)
		return ret;

	dev_dbg(gp2ap002->dev, "read %d mA from ADC\n", res);

	/* ensure we don't under/overflow */
	res = clamp(res, 0, (int)ARRAY_SIZE(gp2ap002_illuminance_table) - 1);
	lux = gp2ap002_illuminance_table[res];

	return (int)lux;
}

static int gp2ap002_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val, int *val2, long mask)
{
	struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
	int ret;

	pm_runtime_get_sync(gp2ap002->dev);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_LIGHT:
			ret = gp2ap002_get_lux(gp2ap002);
			if (ret < 0)
				return ret;
			*val = ret;
			ret = IIO_VAL_INT;
			goto out;
		default:
			ret = -EINVAL;
			goto out;
		}
	default:
		ret = -EINVAL;
	}

out:
	pm_runtime_mark_last_busy(gp2ap002->dev);
	pm_runtime_put_autosuspend(gp2ap002->dev);

	return ret;
}

static int gp2ap002_init(struct gp2ap002 *gp2ap002)
{
	int ret;

	/* Set up the IR LED resistance */
	ret = regmap_write(gp2ap002->map, GP2AP002_GAIN,
			   GP2AP002_GAIN_LED_NORMAL);
	if (ret) {
		dev_err(gp2ap002->dev, "error setting up LED gain\n");
		return ret;
	}
	ret = regmap_write(gp2ap002->map, GP2AP002_HYS, gp2ap002->hys_far);
	if (ret) {
		dev_err(gp2ap002->dev,
			"error setting up proximity hysteresis\n");
		return ret;
	}

	/* Disable internal frequency hopping */
	ret = regmap_write(gp2ap002->map, GP2AP002_CYCLE,
			   GP2AP002_CYCLE_OSC_INEFFECTIVE);
	if (ret) {
		dev_err(gp2ap002->dev,
			"error setting up internal frequency hopping\n");
		return ret;
	}

	/* Enable chip and IRQ, disable analog sleep */
	ret = regmap_write(gp2ap002->map, GP2AP002_OPMOD,
			   GP2AP002_OPMOD_SSD_OPERATING |
			   GP2AP002_OPMOD_VCON_IRQ);
	if (ret) {
		dev_err(gp2ap002->dev, "error setting up operation mode\n");
		return ret;
	}

	/* Interrupt on VOUT enabled */
	ret = regmap_write(gp2ap002->map, GP2AP002_CON,
			   GP2AP002_CON_OCON_ENABLE);
	if (ret)
		dev_err(gp2ap002->dev, "error setting up VOUT control\n");

	return ret;
}

static int gp2ap002_read_event_config(struct iio_dev *indio_dev,
				      const struct iio_chan_spec *chan,
				      enum iio_event_type type,
				      enum iio_event_direction dir)
{
	struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);

	/*
	 * We just keep track of this internally, as it is not possible to
	 * query the hardware.
	 */
	return gp2ap002->enabled;
}

static int gp2ap002_write_event_config(struct iio_dev *indio_dev,
				       const struct iio_chan_spec *chan,
				       enum iio_event_type type,
				       enum iio_event_direction dir,
				       int state)
{
	struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);

	if (state) {
		/*
		 * This will bring the regulators up (unless they are on
		 * already) and reintialize the sensor by using runtime_pm
		 * callbacks.
		 */
		pm_runtime_get_sync(gp2ap002->dev);
		gp2ap002->enabled = true;
	} else {
		pm_runtime_mark_last_busy(gp2ap002->dev);
		pm_runtime_put_autosuspend(gp2ap002->dev);
		gp2ap002->enabled = false;
	}

	return 0;
}

static const struct iio_info gp2ap002_info = {
	.read_raw = gp2ap002_read_raw,
	.read_event_config = gp2ap002_read_event_config,
	.write_event_config = gp2ap002_write_event_config,
};

static const struct iio_event_spec gp2ap002_events[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_EITHER,
		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
	},
};

static const struct iio_chan_spec gp2ap002_channels[] = {
	{
		.type = IIO_PROXIMITY,
		.event_spec = gp2ap002_events,
		.num_event_specs = ARRAY_SIZE(gp2ap002_events),
	},
	{
		.type = IIO_LIGHT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
		.channel = GP2AP002_ALS_CHANNEL,
	},
};

/*
 * We need a special regmap because this hardware expects to
 * write single bytes to registers but read a 16bit word on some
 * variants and discard the lower 8 bits so combine
 * i2c_smbus_read_word_data() with i2c_smbus_write_byte_data()
 * selectively like this.
 */
static int gp2ap002_regmap_i2c_read(void *context, unsigned int reg,
				    unsigned int *val)
{
	struct device *dev = context;
	struct i2c_client *i2c = to_i2c_client(dev);
	int ret;

	ret = i2c_smbus_read_word_data(i2c, reg);
	if (ret < 0)
		return ret;

	*val = (ret >> 8) & 0xFF;

	return 0;
}

static int gp2ap002_regmap_i2c_write(void *context, unsigned int reg,
				     unsigned int val)
{
	struct device *dev = context;
	struct i2c_client *i2c = to_i2c_client(dev);

	return i2c_smbus_write_byte_data(i2c, reg, val);
}

static struct regmap_bus gp2ap002_regmap_bus = {
	.reg_read = gp2ap002_regmap_i2c_read,
	.reg_write = gp2ap002_regmap_i2c_write,
};

static int gp2ap002_probe(struct i2c_client *client)
{
	struct gp2ap002 *gp2ap002;
	struct iio_dev *indio_dev;
	struct device *dev = &client->dev;
	enum iio_chan_type ch_type;
	static const struct regmap_config config = {
		.reg_bits = 8,
		.val_bits = 8,
		.max_register = GP2AP002_CON,
	};
	struct regmap *regmap;
	int num_chan;
	const char *compat;
	u8 val;
	int ret;

	indio_dev = devm_iio_device_alloc(dev, sizeof(*gp2ap002));
	if (!indio_dev)
		return -ENOMEM;
	i2c_set_clientdata(client, indio_dev);

	gp2ap002 = iio_priv(indio_dev);
	gp2ap002->dev = dev;

	/*
	 * Check the device compatible like this makes it possible to use
	 * ACPI PRP0001 for registering the sensor using device tree
	 * properties.
	 */
	ret = device_property_read_string(dev, "compatible", &compat);
	if (ret) {
		dev_err(dev, "cannot check compatible\n");
		return ret;
	}
	gp2ap002->is_gp2ap002s00f = !strcmp(compat, "sharp,gp2ap002s00f");

	regmap = devm_regmap_init(dev, &gp2ap002_regmap_bus, dev, &config);
	if (IS_ERR(regmap)) {
		dev_err(dev, "Failed to register i2c regmap %ld\n", PTR_ERR(regmap));
		return PTR_ERR(regmap);
	}
	gp2ap002->map = regmap;

	/*
	 * The hysteresis settings are coded into the device tree as values
	 * to be written into the hysteresis register. The datasheet defines
	 * modes "A", "B1" and "B2" with fixed values to be use but vendor
	 * code trees for actual devices are tweaking these values and refer to
	 * modes named things like "B1.5". To be able to support any devices,
	 * we allow passing an arbitrary hysteresis setting for "near" and
	 * "far".
	 */

	/* Check the device tree for the IR LED hysteresis */
	ret = device_property_read_u8(dev, "sharp,proximity-far-hysteresis",
				      &val);
	if (ret) {
		dev_err(dev, "failed to obtain proximity far setting\n");
		return ret;
	}
	dev_dbg(dev, "proximity far setting %02x\n", val);
	gp2ap002->hys_far = val;

	ret = device_property_read_u8(dev, "sharp,proximity-close-hysteresis",
				      &val);
	if (ret) {
		dev_err(dev, "failed to obtain proximity close setting\n");
		return ret;
	}
	dev_dbg(dev, "proximity close setting %02x\n", val);
	gp2ap002->hys_close = val;

	/* The GP2AP002A00F has a light sensor too */
	if (!gp2ap002->is_gp2ap002s00f) {
		gp2ap002->alsout = devm_iio_channel_get(dev, "alsout");
		if (IS_ERR(gp2ap002->alsout)) {
			ret = PTR_ERR(gp2ap002->alsout);
			ret = (ret == -ENODEV) ? -EPROBE_DEFER : ret;
			return dev_err_probe(dev, ret, "failed to get ALSOUT ADC channel\n");
		}
		ret = iio_get_channel_type(gp2ap002->alsout, &ch_type);
		if (ret < 0)
			return ret;
		if (ch_type != IIO_CURRENT) {
			dev_err(dev,
				"wrong type of IIO channel specified for ALSOUT\n");
			return -EINVAL;
		}
	}

	gp2ap002->vdd = devm_regulator_get(dev, "vdd");
	if (IS_ERR(gp2ap002->vdd))
		return dev_err_probe(dev, PTR_ERR(gp2ap002->vdd),
				     "failed to get VDD regulator\n");

	gp2ap002->vio = devm_regulator_get(dev, "vio");
	if (IS_ERR(gp2ap002->vio))
		return dev_err_probe(dev, PTR_ERR(gp2ap002->vio),
				     "failed to get VIO regulator\n");

	/* Operating voltage 2.4V .. 3.6V according to datasheet */
	ret = regulator_set_voltage(gp2ap002->vdd, 2400000, 3600000);
	if (ret) {
		dev_err(dev, "failed to sett VDD voltage\n");
		return ret;
	}

	/* VIO should be between 1.65V and VDD */
	ret = regulator_get_voltage(gp2ap002->vdd);
	if (ret < 0) {
		dev_err(dev, "failed to get VDD voltage\n");
		return ret;
	}
	ret = regulator_set_voltage(gp2ap002->vio, 1650000, ret);
	if (ret) {
		dev_err(dev, "failed to set VIO voltage\n");
		return ret;
	}

	ret = regulator_enable(gp2ap002->vdd);
	if (ret) {
		dev_err(dev, "failed to enable VDD regulator\n");
		return ret;
	}
	ret = regulator_enable(gp2ap002->vio);
	if (ret) {
		dev_err(dev, "failed to enable VIO regulator\n");
		goto out_disable_vdd;
	}

	msleep(20);

	/*
	 * Initialize the device and signal to runtime PM that now we are
	 * definitely up and using power.
	 */
	ret = gp2ap002_init(gp2ap002);
	if (ret) {
		dev_err(dev, "initialization failed\n");
		goto out_disable_vio;
	}
	pm_runtime_get_noresume(dev);
	pm_runtime_set_active(dev);
	pm_runtime_enable(dev);
	gp2ap002->enabled = false;

	ret = devm_request_threaded_irq(dev, client->irq, NULL,
					gp2ap002_prox_irq, IRQF_ONESHOT,
					"gp2ap002", indio_dev);
	if (ret) {
		dev_err(dev, "unable to request IRQ\n");
		goto out_put_pm;
	}
	gp2ap002->irq = client->irq;

	/*
	 * As the device takes 20 ms + regulator delay to come up with a fresh
	 * measurement after power-on, do not shut it down unnecessarily.
	 * Set autosuspend to a one second.
	 */
	pm_runtime_set_autosuspend_delay(dev, 1000);
	pm_runtime_use_autosuspend(dev);
	pm_runtime_put(dev);

	indio_dev->info = &gp2ap002_info;
	indio_dev->name = "gp2ap002";
	indio_dev->channels = gp2ap002_channels;
	/* Skip light channel for the proximity-only sensor */
	num_chan = ARRAY_SIZE(gp2ap002_channels);
	if (gp2ap002->is_gp2ap002s00f)
		num_chan--;
	indio_dev->num_channels = num_chan;
	indio_dev->modes = INDIO_DIRECT_MODE;

	ret = iio_device_register(indio_dev);
	if (ret)
		goto out_disable_pm;
	dev_dbg(dev, "Sharp GP2AP002 probed successfully\n");

	return 0;

out_put_pm:
	pm_runtime_put_noidle(dev);
out_disable_pm:
	pm_runtime_disable(dev);
out_disable_vio:
	regulator_disable(gp2ap002->vio);
out_disable_vdd:
	regulator_disable(gp2ap002->vdd);
	return ret;
}

static void gp2ap002_remove(struct i2c_client *client)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(client);
	struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
	struct device *dev = &client->dev;

	pm_runtime_get_sync(dev);
	pm_runtime_put_noidle(dev);
	pm_runtime_disable(dev);
	iio_device_unregister(indio_dev);
	regulator_disable(gp2ap002->vio);
	regulator_disable(gp2ap002->vdd);
}

static int gp2ap002_runtime_suspend(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
	int ret;

	/* Deactivate the IRQ */
	disable_irq(gp2ap002->irq);

	/* Disable chip and IRQ, everything off */
	ret = regmap_write(gp2ap002->map, GP2AP002_OPMOD, 0x00);
	if (ret) {
		dev_err(gp2ap002->dev, "error setting up operation mode\n");
		return ret;
	}
	/*
	 * As these regulators may be shared, at least we are now in
	 * sleep even if the regulators aren't really turned off.
	 */
	regulator_disable(gp2ap002->vio);
	regulator_disable(gp2ap002->vdd);

	return 0;
}

static int gp2ap002_runtime_resume(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
	int ret;

	ret = regulator_enable(gp2ap002->vdd);
	if (ret) {
		dev_err(dev, "failed to enable VDD regulator in resume path\n");
		return ret;
	}
	ret = regulator_enable(gp2ap002->vio);
	if (ret) {
		dev_err(dev, "failed to enable VIO regulator in resume path\n");
		return ret;
	}

	msleep(20);

	ret = gp2ap002_init(gp2ap002);
	if (ret) {
		dev_err(dev, "re-initialization failed\n");
		return ret;
	}

	/* Re-activate the IRQ */
	enable_irq(gp2ap002->irq);

	return 0;
}

static DEFINE_RUNTIME_DEV_PM_OPS(gp2ap002_dev_pm_ops, gp2ap002_runtime_suspend,
				 gp2ap002_runtime_resume, NULL);

static const struct i2c_device_id gp2ap002_id_table[] = {
	{ "gp2ap002", 0 },
	{ },
};
MODULE_DEVICE_TABLE(i2c, gp2ap002_id_table);

static const struct of_device_id gp2ap002_of_match[] = {
	{ .compatible = "sharp,gp2ap002a00f" },
	{ .compatible = "sharp,gp2ap002s00f" },
	{ },
};
MODULE_DEVICE_TABLE(of, gp2ap002_of_match);

static struct i2c_driver gp2ap002_driver = {
	.driver = {
		.name = "gp2ap002",
		.of_match_table = gp2ap002_of_match,
		.pm = pm_ptr(&gp2ap002_dev_pm_ops),
	},
	.probe = gp2ap002_probe,
	.remove = gp2ap002_remove,
	.id_table = gp2ap002_id_table,
};
module_i2c_driver(gp2ap002_driver);

MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
MODULE_DESCRIPTION("GP2AP002 ambient light and proximity sensor driver");
MODULE_LICENSE("GPL v2");