// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include "dsi_phy.h"
#include "dsi.xml.h"
#include "dsi_phy_14nm.xml.h"
#define PHY_14NM_CKLN_IDX 4
/*
* DSI PLL 14nm - clock diagram (eg: DSI0):
*
* dsi0n1_postdiv_clk
* |
* |
* +----+ | +----+
* dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
* +----+ | +----+
* | dsi0n1_postdivby2_clk
* | +----+ |
* o---| /2 |--o--|\
* | +----+ | \ +----+
* | | |--| n2 |-- dsi0pll
* o--------------| / +----+
* |/
*/
#define POLL_MAX_READS 15
#define POLL_TIMEOUT_US 1000
#define VCO_REF_CLK_RATE 19200000
#define VCO_MIN_RATE 1300000000UL
#define VCO_MAX_RATE 2600000000UL
struct dsi_pll_config {
u64 vco_current_rate;
u32 ssc_en; /* SSC enable/disable */
/* fixed params */
u32 plllock_cnt;
u32 ssc_center;
u32 ssc_adj_period;
u32 ssc_spread;
u32 ssc_freq;
/* calculated */
u32 dec_start;
u32 div_frac_start;
u32 ssc_period;
u32 ssc_step_size;
u32 plllock_cmp;
u32 pll_vco_div_ref;
u32 pll_vco_count;
u32 pll_kvco_div_ref;
u32 pll_kvco_count;
};
struct pll_14nm_cached_state {
unsigned long vco_rate;
u8 n2postdiv;
u8 n1postdiv;
};
struct dsi_pll_14nm {
struct clk_hw clk_hw;
struct msm_dsi_phy *phy;
/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
spinlock_t postdiv_lock;
struct pll_14nm_cached_state cached_state;
struct dsi_pll_14nm *slave;
};
#define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, clk_hw)
/*
* Private struct for N1/N2 post-divider clocks. These clocks are similar to
* the generic clk_divider class of clocks. The only difference is that it
* also sets the slave DSI PLL's post-dividers if in bonded DSI mode
*/
struct dsi_pll_14nm_postdiv {
struct clk_hw hw;
/* divider params */
u8 shift;
u8 width;
u8 flags; /* same flags as used by clk_divider struct */
struct dsi_pll_14nm *pll;
};
#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
/*
* Global list of private DSI PLL struct pointers. We need this for bonded DSI
* mode, where the master PLL's clk_ops needs access the slave's private data
*/
static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
u32 nb_tries, u32 timeout_us)
{
bool pll_locked = false, pll_ready = false;
void __iomem *base = pll_14nm->phy->pll_base;
u32 tries, val;
tries = nb_tries;
while (tries--) {
val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
pll_locked = !!(val & BIT(5));
if (pll_locked)
break;
udelay(timeout_us);
}
if (!pll_locked)
goto out;
tries = nb_tries;
while (tries--) {
val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
pll_ready = !!(val & BIT(0));
if (pll_ready)
break;
udelay(timeout_us);
}
out:
DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
return pll_locked && pll_ready;
}
static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
{
/* fixed input */
pconf->plllock_cnt = 1;
/*
* SSC is enabled by default. We might need DT props for configuring
* some SSC params like PPM and center/down spread etc.
*/
pconf->ssc_en = 1;
pconf->ssc_center = 0; /* down spread by default */
pconf->ssc_spread = 5; /* PPM / 1000 */
pconf->ssc_freq = 31500; /* default recommended */
pconf->ssc_adj_period = 37;
}
#define CEIL(x, y) (((x) + ((y) - 1)) / (y))
static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
{
u32 period, ssc_period;
u32 ref, rem;
u64 step_size;
DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
ssc_period = pconf->ssc_freq / 500;
period = (u32)VCO_REF_CLK_RATE / 1000;
ssc_period = CEIL(period, ssc_period);
ssc_period -= 1;
pconf->ssc_period = ssc_period;
DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
pconf->ssc_spread, pconf->ssc_period);
step_size = (u32)pconf->vco_current_rate;
ref = VCO_REF_CLK_RATE;
ref /= 1000;
step_size = div_u64(step_size, ref);
step_size <<= 20;
step_size = div_u64(step_size, 1000);
step_size *= pconf->ssc_spread;
step_size = div_u64(step_size, 1000);
step_size *= (pconf->ssc_adj_period + 1);
rem = 0;
step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
if (rem)
step_size++;
DBG("step_size=%lld", step_size);
step_size &= 0x0ffff; /* take lower 16 bits */
pconf->ssc_step_size = step_size;
}
static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
{
u64 multiplier = BIT(20);
u64 dec_start_multiple, dec_start, pll_comp_val;
u32 duration, div_frac_start;
u64 vco_clk_rate = pconf->vco_current_rate;
u64 fref = VCO_REF_CLK_RATE;
DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
pconf->dec_start = (u32)dec_start;
pconf->div_frac_start = div_frac_start;
if (pconf->plllock_cnt == 0)
duration = 1024;
else if (pconf->plllock_cnt == 1)
duration = 256;
else if (pconf->plllock_cnt == 2)
duration = 128;
else
duration = 32;
pll_comp_val = duration * dec_start_multiple;
pll_comp_val = div_u64(pll_comp_val, multiplier);
do_div(pll_comp_val, 10);
pconf->plllock_cmp = (u32)pll_comp_val;
}
static u32 pll_14nm_kvco_slop(u32 vrate)
{
u32 slop = 0;
if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
slop = 600;
else if (vrate > 1800000000UL && vrate < 2300000000UL)
slop = 400;
else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
slop = 280;
return slop;
}
static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
{
u64 vco_clk_rate = pconf->vco_current_rate;
u64 fref = VCO_REF_CLK_RATE;
u32 vco_measure_time = 5;
u32 kvco_measure_time = 5;
u64 data;
u32 cnt;
data = fref * vco_measure_time;
do_div(data, 1000000);
data &= 0x03ff; /* 10 bits */
data -= 2;
pconf->pll_vco_div_ref = data;
data = div_u64(vco_clk_rate, 1000000); /* unit is Mhz */
data *= vco_measure_time;
do_div(data, 10);
pconf->pll_vco_count = data;
data = fref * kvco_measure_time;
do_div(data, 1000000);
data &= 0x03ff; /* 10 bits */
data -= 1;
pconf->pll_kvco_div_ref = data;
cnt = pll_14nm_kvco_slop(vco_clk_rate);
cnt *= 2;
cnt /= 100;
cnt *= kvco_measure_time;
pconf->pll_kvco_count = cnt;
}
static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
{
void __iomem *base = pll->phy->pll_base;
u8 data;
data = pconf->ssc_adj_period;
data &= 0x0ff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
data = (pconf->ssc_adj_period >> 8);
data &= 0x03;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
data = pconf->ssc_period;
data &= 0x0ff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
data = (pconf->ssc_period >> 8);
data &= 0x0ff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
data = pconf->ssc_step_size;
data &= 0x0ff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
data = (pconf->ssc_step_size >> 8);
data &= 0x0ff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
data = (pconf->ssc_center & 0x01);
data <<= 1;
data |= 0x01; /* enable */
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
wmb(); /* make sure register committed */
}
static void pll_db_commit_common(struct dsi_pll_14nm *pll,
struct dsi_pll_config *pconf)
{
void __iomem *base = pll->phy->pll_base;
u8 data;
/* confgiure the non frequency dependent pll registers */
data = 0;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
data = pconf->pll_vco_div_ref & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
data = (pconf->pll_vco_div_ref >> 8) & 0x3;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
data = pconf->pll_kvco_div_ref & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
}
static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
{
void __iomem *cmn_base = pll_14nm->phy->base;
/* de assert pll start and apply pll sw reset */
/* stop pll */
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
/* pll sw reset */
dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
wmb(); /* make sure register committed */
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
wmb(); /* make sure register committed */
}
static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
struct dsi_pll_config *pconf)
{
void __iomem *base = pll->phy->pll_base;
void __iomem *cmn_base = pll->phy->base;
u8 data;
DBG("DSI%d PLL", pll->phy->id);
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
pll_db_commit_common(pll, pconf);
pll_14nm_software_reset(pll);
/* Use the /2 path in Mux */
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
data = 0xff; /* data, clk, pll normal operation */
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
/* configure the frequency dependent pll registers */
data = pconf->dec_start;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
data = pconf->div_frac_start & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
data = (pconf->div_frac_start >> 8) & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
data = (pconf->div_frac_start >> 16) & 0xf;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
data = pconf->plllock_cmp & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
data = (pconf->plllock_cmp >> 8) & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
data = (pconf->plllock_cmp >> 16) & 0x3;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
data = pconf->pll_vco_count & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
data = (pconf->pll_vco_count >> 8) & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
data = pconf->pll_kvco_count & 0xff;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
data = (pconf->pll_kvco_count >> 8) & 0x3;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
/*
* High nibble configures the post divider internal to the VCO. It's
* fixed to divide by 1 for now.
*
* 0: divided by 1
* 1: divided by 2
* 2: divided by 4
* 3: divided by 8
*/
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
if (pconf->ssc_en)
pll_db_commit_ssc(pll, pconf);
wmb(); /* make sure register committed */
}
/*
* VCO clock Callbacks
*/
static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
struct dsi_pll_config conf;
DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
parent_rate);
dsi_pll_14nm_config_init(&conf);
conf.vco_current_rate = rate;
pll_14nm_dec_frac_calc(pll_14nm, &conf);
if (conf.ssc_en)
pll_14nm_ssc_calc(pll_14nm, &conf);
pll_14nm_calc_vco_count(pll_14nm, &conf);
/* commit the slave DSI PLL registers if we're master. Note that we
* don't lock the slave PLL. We just ensure that the PLL/PHY registers
* of the master and slave are identical
*/
if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
pll_db_commit_14nm(pll_14nm_slave, &conf);
}
pll_db_commit_14nm(pll_14nm, &conf);
return 0;
}
static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
void __iomem *base = pll_14nm->phy->pll_base;
u64 vco_rate, multiplier = BIT(20);
u32 div_frac_start;
u32 dec_start;
u64 ref_clk = parent_rate;
dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
dec_start &= 0x0ff;
DBG("dec_start = %x", dec_start);
div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
& 0xf) << 16;
div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
& 0xff) << 8;
div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
& 0xff;
DBG("div_frac_start = %x", div_frac_start);
vco_rate = ref_clk * dec_start;
vco_rate += ((ref_clk * div_frac_start) / multiplier);
/*
* Recalculating the rate from dec_start and frac_start doesn't end up
* the rate we originally set. Convert the freq to KHz, round it up and
* convert it back to MHz.
*/
vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
DBG("returning vco rate = %lu", (unsigned long)vco_rate);
return (unsigned long)vco_rate;
}
static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
void __iomem *base = pll_14nm->phy->pll_base;
void __iomem *cmn_base = pll_14nm->phy->base;
bool locked;
DBG("");
if (unlikely(pll_14nm->phy->pll_on))
return 0;
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
POLL_TIMEOUT_US);
if (unlikely(!locked)) {
DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
return -EINVAL;
}
DBG("DSI PLL lock success");
pll_14nm->phy->pll_on = true;
return 0;
}
static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
void __iomem *cmn_base = pll_14nm->phy->base;
DBG("");
if (unlikely(!pll_14nm->phy->pll_on))
return;
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
pll_14nm->phy->pll_on = false;
}
static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *parent_rate)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
if (rate < pll_14nm->phy->cfg->min_pll_rate)
return pll_14nm->phy->cfg->min_pll_rate;
else if (rate > pll_14nm->phy->cfg->max_pll_rate)
return pll_14nm->phy->cfg->max_pll_rate;
else
return rate;
}
static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
.round_rate = dsi_pll_14nm_clk_round_rate,
.set_rate = dsi_pll_14nm_vco_set_rate,
.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
.prepare = dsi_pll_14nm_vco_prepare,
.unprepare = dsi_pll_14nm_vco_unprepare,
};
/*
* N1 and N2 post-divider clock callbacks
*/
#define div_mask(width) ((1 << (width)) - 1)
static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
struct dsi_pll_14nm *pll_14nm = postdiv->pll;
void __iomem *base = pll_14nm->phy->base;
u8 shift = postdiv->shift;
u8 width = postdiv->width;
u32 val;
DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
val &= div_mask(width);
return divider_recalc_rate(hw, parent_rate, val, NULL,
postdiv->flags, width);
}
static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *prate)
{
struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
struct dsi_pll_14nm *pll_14nm = postdiv->pll;
DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
return divider_round_rate(hw, rate, prate, NULL,
postdiv->width,
postdiv->flags);
}
static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
struct dsi_pll_14nm *pll_14nm = postdiv->pll;
void __iomem *base = pll_14nm->phy->base;
spinlock_t *lock = &pll_14nm->postdiv_lock;
u8 shift = postdiv->shift;
u8 width = postdiv->width;
unsigned int value;
unsigned long flags = 0;
u32 val;
DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
parent_rate);
value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
postdiv->flags);
spin_lock_irqsave(lock, flags);
val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
val &= ~(div_mask(width) << shift);
val |= value << shift;
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
/* If we're master in bonded DSI mode, then the slave PLL's post-dividers
* follow the master's post dividers
*/
if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
void __iomem *slave_base = pll_14nm_slave->phy->base;
dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
}
spin_unlock_irqrestore(lock, flags);
return 0;
}
static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
.round_rate = dsi_pll_14nm_postdiv_round_rate,
.set_rate = dsi_pll_14nm_postdiv_set_rate,
};
/*
* PLL Callbacks
*/
static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
void __iomem *cmn_base = pll_14nm->phy->base;
u32 data;
data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
cached_state->n1postdiv = data & 0xf;
cached_state->n2postdiv = (data >> 4) & 0xf;
DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
cached_state->n1postdiv, cached_state->n2postdiv);
cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
}
static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
void __iomem *cmn_base = pll_14nm->phy->base;
u32 data;
int ret;
ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
cached_state->vco_rate, 0);
if (ret) {
DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
"restore vco rate failed. ret=%d\n", ret);
return ret;
}
data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
cached_state->n1postdiv, cached_state->n2postdiv);
dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
/* also restore post-dividers for slave DSI PLL */
if (phy->usecase == MSM_DSI_PHY_MASTER) {
struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
void __iomem *slave_base = pll_14nm_slave->phy->base;
dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
}
return 0;
}
static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
void __iomem *base = phy->pll_base;
u32 clkbuflr_en, bandgap = 0;
switch (phy->usecase) {
case MSM_DSI_PHY_STANDALONE:
clkbuflr_en = 0x1;
break;
case MSM_DSI_PHY_MASTER:
clkbuflr_en = 0x3;
pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
break;
case MSM_DSI_PHY_SLAVE:
clkbuflr_en = 0x0;
bandgap = 0x3;
break;
default:
return -EINVAL;
}
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
if (bandgap)
dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
return 0;
}
static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
const char *name,
const struct clk_hw *parent_hw,
unsigned long flags,
u8 shift)
{
struct dsi_pll_14nm_postdiv *pll_postdiv;
struct device *dev = &pll_14nm->phy->pdev->dev;
struct clk_init_data postdiv_init = {
.parent_hws = (const struct clk_hw *[]) { parent_hw },
.num_parents = 1,
.name = name,
.flags = flags,
.ops = &clk_ops_dsi_pll_14nm_postdiv,
};
int ret;
pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
if (!pll_postdiv)
return ERR_PTR(-ENOMEM);
pll_postdiv->pll = pll_14nm;
pll_postdiv->shift = shift;
/* both N1 and N2 postdividers are 4 bits wide */
pll_postdiv->width = 4;
/* range of each divider is from 1 to 15 */
pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
pll_postdiv->hw.init = &postdiv_init;
ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
if (ret)
return ERR_PTR(ret);
return &pll_postdiv->hw;
}
static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
{
char clk_name[32];
struct clk_init_data vco_init = {
.parent_data = &(const struct clk_parent_data) {
.fw_name = "ref",
},
.num_parents = 1,
.name = clk_name,
.flags = CLK_IGNORE_UNUSED,
.ops = &clk_ops_dsi_pll_14nm_vco,
};
struct device *dev = &pll_14nm->phy->pdev->dev;
struct clk_hw *hw, *n1_postdiv, *n1_postdivby2;
int ret;
DBG("DSI%d", pll_14nm->phy->id);
snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id);
pll_14nm->clk_hw.init = &vco_init;
ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
if (ret)
return ret;
snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name,
&pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0);
if (IS_ERR(n1_postdiv))
return PTR_ERR(n1_postdiv);
snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id);
/* DSI Byte clock = VCO_CLK / N1 / 8 */
hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
n1_postdiv, CLK_SET_RATE_PARENT, 1, 8);
if (IS_ERR(hw))
return PTR_ERR(hw);
provided_clocks[DSI_BYTE_PLL_CLK] = hw;
snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
/*
* Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
* on the way. Don't let it set parent.
*/
n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
clk_name, n1_postdiv, 0, 1, 2);
if (IS_ERR(n1_postdivby2))
return PTR_ERR(n1_postdivby2);
snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id);
/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
* This is the output of N2 post-divider, bits 4-7 in
* REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
*/
hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2,
0, 4);
if (IS_ERR(hw))
return PTR_ERR(hw);
provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
return 0;
}
static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
struct dsi_pll_14nm *pll_14nm;
int ret;
if (!pdev)
return -ENODEV;
pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
if (!pll_14nm)
return -ENOMEM;
DBG("PLL%d", phy->id);
pll_14nm_list[phy->id] = pll_14nm;
spin_lock_init(&pll_14nm->postdiv_lock);
pll_14nm->phy = phy;
ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
return ret;
}
phy->vco_hw = &pll_14nm->clk_hw;
return 0;
}
static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
struct msm_dsi_dphy_timing *timing,
int lane_idx)
{
void __iomem *base = phy->lane_base;
bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
timing->hs_halfbyte_en;
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
}
static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
struct msm_dsi_phy_clk_request *clk_req)
{
struct msm_dsi_dphy_timing *timing = &phy->timing;
u32 data;
int i;
int ret;
void __iomem *base = phy->base;
void __iomem *lane_base = phy->lane_base;
u32 glbl_test_ctrl;
if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
DRM_DEV_ERROR(&phy->pdev->dev,
"%s: D-PHY timing calculation failed\n",
__func__);
return -EINVAL;
}
data = 0x1c;
if (phy->usecase != MSM_DSI_PHY_STANDALONE)
data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
/* 4 data lanes + 1 clk lane configuration */
for (i = 0; i < 5; i++) {
dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
0x1d);
dsi_phy_write(lane_base +
REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
dsi_phy_write(lane_base +
REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
(i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
(i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
0);
dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
0x88);
dsi_14nm_dphy_set_timing(phy, timing, i);
}
/* Make sure PLL is not start */
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
wmb(); /* make sure everything is written before reset and enable */
/* reset digital block */
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
wmb(); /* ensure reset is asserted */
udelay(100);
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
else
glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
ret = dsi_14nm_set_usecase(phy);
if (ret) {
DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
__func__, ret);
return ret;
}
/* Remove power down from PLL and all lanes */
dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
return 0;
}
static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
{
dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
/* ensure that the phy is completely disabled */
wmb();
}
static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = {
{ .supply = "vcca", .init_load_uA = 17000 },
};
static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = {
{ .supply = "vcca", .init_load_uA = 73400 },
};
const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_14nm_17mA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
.ops = {
.enable = dsi_14nm_phy_enable,
.disable = dsi_14nm_phy_disable,
.pll_init = dsi_pll_14nm_init,
.save_pll_state = dsi_14nm_pll_save_state,
.restore_pll_state = dsi_14nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0x994400, 0x996400 },
.num_dsi_phy = 2,
};
const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_14nm_73p4mA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators),
.ops = {
.enable = dsi_14nm_phy_enable,
.disable = dsi_14nm_phy_disable,
.pll_init = dsi_pll_14nm_init,
.save_pll_state = dsi_14nm_pll_save_state,
.restore_pll_state = dsi_14nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0xc994400, 0xc996400 },
.num_dsi_phy = 2,
};
const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_14nm_17mA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
.ops = {
.enable = dsi_14nm_phy_enable,
.disable = dsi_14nm_phy_disable,
.pll_init = dsi_pll_14nm_init,
.save_pll_state = dsi_14nm_pll_save_state,
.restore_pll_state = dsi_14nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0x1a94400, 0x1a96400 },
.num_dsi_phy = 2,
};
const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_14nm_17mA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
.ops = {
.enable = dsi_14nm_phy_enable,
.disable = dsi_14nm_phy_disable,
.pll_init = dsi_pll_14nm_init,
.save_pll_state = dsi_14nm_pll_save_state,
.restore_pll_state = dsi_14nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0x5e94400 },
.num_dsi_phy = 1,
};