Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2006-2011 Intel Corporation * * Authors: * Eric Anholt <eric@anholt.net> */ #include <linux/delay.h> #include <linux/i2c.h> #include <drm/drm_crtc.h> #include <drm/drm_modeset_helper_vtables.h> #include "cdv_device.h" #include "framebuffer.h" #include "gma_display.h" #include "power.h" #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, struct gma_clock_t *best_clock); #define CDV_LIMIT_SINGLE_LVDS_96 0 #define CDV_LIMIT_SINGLE_LVDS_100 1 #define CDV_LIMIT_DAC_HDMI_27 2 #define CDV_LIMIT_DAC_HDMI_96 3 #define CDV_LIMIT_DP_27 4 #define CDV_LIMIT_DP_100 5 static const struct gma_limit_t cdv_intel_limits[] = { { /* CDV_SINGLE_LVDS_96MHz */ .dot = {.min = 20000, .max = 115500}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 160}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 158}, .p = {.min = 28, .max = 140}, .p1 = {.min = 2, .max = 10}, .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, .find_pll = gma_find_best_pll, }, { /* CDV_SINGLE_LVDS_100MHz */ .dot = {.min = 20000, .max = 115500}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 160}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 158}, .p = {.min = 28, .max = 140}, .p1 = {.min = 2, .max = 10}, /* The single-channel range is 25-112Mhz, and dual-channel * is 80-224Mhz. Prefer single channel as much as possible. */ .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, .find_pll = gma_find_best_pll, }, { /* CDV_DAC_HDMI_27MHz */ .dot = {.min = 20000, .max = 400000}, .vco = {.min = 1809000, .max = 3564000}, .n = {.min = 1, .max = 1}, .m = {.min = 67, .max = 132}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 65, .max = 130}, .p = {.min = 5, .max = 90}, .p1 = {.min = 1, .max = 9}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, .find_pll = gma_find_best_pll, }, { /* CDV_DAC_HDMI_96MHz */ .dot = {.min = 20000, .max = 400000}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 160}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 158}, .p = {.min = 5, .max = 100}, .p1 = {.min = 1, .max = 10}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, .find_pll = gma_find_best_pll, }, { /* CDV_DP_27MHz */ .dot = {.min = 160000, .max = 272000}, .vco = {.min = 1809000, .max = 3564000}, .n = {.min = 1, .max = 1}, .m = {.min = 67, .max = 132}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 65, .max = 130}, .p = {.min = 5, .max = 90}, .p1 = {.min = 1, .max = 9}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, .find_pll = cdv_intel_find_dp_pll, }, { /* CDV_DP_100MHz */ .dot = {.min = 160000, .max = 272000}, .vco = {.min = 1800000, .max = 3600000}, .n = {.min = 2, .max = 6}, .m = {.min = 60, .max = 164}, .m1 = {.min = 0, .max = 0}, .m2 = {.min = 58, .max = 162}, .p = {.min = 5, .max = 100}, .p1 = {.min = 1, .max = 10}, .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, .find_pll = cdv_intel_find_dp_pll, } }; #define _wait_for(COND, MS, W) ({ \ unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ int ret__ = 0; \ while (!(COND)) { \ if (time_after(jiffies, timeout__)) { \ ret__ = -ETIMEDOUT; \ break; \ } \ if (W && !in_dbg_master()) \ msleep(W); \ } \ ret__; \ }) #define wait_for(COND, MS) _wait_for(COND, MS, 1) int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val) { int ret; ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle before read\n"); return ret; } REG_WRITE(SB_ADDR, reg); REG_WRITE(SB_PCKT, SET_FIELD(SB_OPCODE_READ, SB_OPCODE) | SET_FIELD(SB_DEST_DPLL, SB_DEST) | SET_FIELD(0xf, SB_BYTE_ENABLE)); ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle after read\n"); return ret; } *val = REG_READ(SB_DATA); return 0; } int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val) { int ret; static bool dpio_debug = true; u32 temp; if (dpio_debug) { if (cdv_sb_read(dev, reg, &temp) == 0) DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp); DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val); } ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle before write\n"); return ret; } REG_WRITE(SB_ADDR, reg); REG_WRITE(SB_DATA, val); REG_WRITE(SB_PCKT, SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) | SET_FIELD(SB_DEST_DPLL, SB_DEST) | SET_FIELD(0xf, SB_BYTE_ENABLE)); ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); if (ret) { DRM_ERROR("timeout waiting for SB to idle after write\n"); return ret; } if (dpio_debug) { if (cdv_sb_read(dev, reg, &temp) == 0) DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp); } return 0; } /* Reset the DPIO configuration register. The BIOS does this at every * mode set. */ void cdv_sb_reset(struct drm_device *dev) { REG_WRITE(DPIO_CFG, 0); REG_READ(DPIO_CFG); REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N); } /* Unlike most Intel display engines, on Cedarview the DPLL registers * are behind this sideband bus. They must be programmed while the * DPLL reference clock is on in the DPLL control register, but before * the DPLL is enabled in the DPLL control register. */ static int cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc, struct gma_clock_t *clock, bool is_lvds, u32 ddi_select) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; u32 m, n_vco, p; int ret = 0; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB; u32 ref_value; u32 lane_reg, lane_value; cdv_sb_reset(dev); REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS); udelay(100); /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */ ref_value = 0x68A701; cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value); /* We don't know what the other fields of these regs are, so * leave them in place. */ /* * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk * for the pipe A/B. Display spec 1.06 has wrong definition. * Correct definition is like below: * * refclka mean use clock from same PLL * * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll * * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA * */ ret = cdv_sb_read(dev, ref_sfr, &ref_value); if (ret) return ret; ref_value &= ~(REF_CLK_MASK); /* use DPLL_A for pipeB on CRT/HDMI */ if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) { DRM_DEBUG_KMS("use DPLLA for pipe B\n"); ref_value |= REF_CLK_DPLLA; } else { DRM_DEBUG_KMS("use their DPLL for pipe A/B\n"); ref_value |= REF_CLK_DPLL; } ret = cdv_sb_write(dev, ref_sfr, ref_value); if (ret) return ret; ret = cdv_sb_read(dev, SB_M(pipe), &m); if (ret) return ret; m &= ~SB_M_DIVIDER_MASK; m |= ((clock->m2) << SB_M_DIVIDER_SHIFT); ret = cdv_sb_write(dev, SB_M(pipe), m); if (ret) return ret; ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco); if (ret) return ret; /* Follow the BIOS to program the N_DIVIDER REG */ n_vco &= 0xFFFF; n_vco |= 0x107; n_vco &= ~(SB_N_VCO_SEL_MASK | SB_N_DIVIDER_MASK | SB_N_CB_TUNE_MASK); n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT); if (clock->vco < 2250000) { n_vco |= (2 << SB_N_CB_TUNE_SHIFT); n_vco |= (0 << SB_N_VCO_SEL_SHIFT); } else if (clock->vco < 2750000) { n_vco |= (1 << SB_N_CB_TUNE_SHIFT); n_vco |= (1 << SB_N_VCO_SEL_SHIFT); } else if (clock->vco < 3300000) { n_vco |= (0 << SB_N_CB_TUNE_SHIFT); n_vco |= (2 << SB_N_VCO_SEL_SHIFT); } else { n_vco |= (0 << SB_N_CB_TUNE_SHIFT); n_vco |= (3 << SB_N_VCO_SEL_SHIFT); } ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco); if (ret) return ret; ret = cdv_sb_read(dev, SB_P(pipe), &p); if (ret) return ret; p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK); p |= SET_FIELD(clock->p1, SB_P1_DIVIDER); switch (clock->p2) { case 5: p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER); break; case 10: p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER); break; case 14: p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER); break; case 7: p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER); break; default: DRM_ERROR("Bad P2 clock: %d\n", clock->p2); return -EINVAL; } ret = cdv_sb_write(dev, SB_P(pipe), p); if (ret) return ret; if (ddi_select) { if ((ddi_select & DDI_MASK) == DDI0_SELECT) { lane_reg = PSB_LANE0; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); lane_reg = PSB_LANE1; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); } else { lane_reg = PSB_LANE2; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); lane_reg = PSB_LANE3; cdv_sb_read(dev, lane_reg, &lane_value); lane_value &= ~(LANE_PLL_MASK); lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); cdv_sb_write(dev, lane_reg, lane_value); } } return 0; } static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc, int refclk) { const struct gma_limit_t *limit; if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { /* * Now only single-channel LVDS is supported on CDV. If it is * incorrect, please add the dual-channel LVDS. */ if (refclk == 96000) limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96]; else limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100]; } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { if (refclk == 27000) limit = &cdv_intel_limits[CDV_LIMIT_DP_27]; else limit = &cdv_intel_limits[CDV_LIMIT_DP_100]; } else { if (refclk == 27000) limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27]; else limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96]; } return limit; } /* m1 is reserved as 0 in CDV, n is a ring counter */ static void cdv_intel_clock(int refclk, struct gma_clock_t *clock) { clock->m = clock->m2 + 2; clock->p = clock->p1 * clock->p2; clock->vco = (refclk * clock->m) / clock->n; clock->dot = clock->vco / clock->p; } static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, struct gma_clock_t *best_clock) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct gma_clock_t clock; memset(&clock, 0, sizeof(clock)); switch (refclk) { case 27000: if (target < 200000) { clock.p1 = 2; clock.p2 = 10; clock.n = 1; clock.m1 = 0; clock.m2 = 118; } else { clock.p1 = 1; clock.p2 = 10; clock.n = 1; clock.m1 = 0; clock.m2 = 98; } break; case 100000: if (target < 200000) { clock.p1 = 2; clock.p2 = 10; clock.n = 5; clock.m1 = 0; clock.m2 = 160; } else { clock.p1 = 1; clock.p2 = 10; clock.n = 5; clock.m1 = 0; clock.m2 = 133; } break; default: return false; } gma_crtc->clock_funcs->clock(refclk, &clock); memcpy(best_clock, &clock, sizeof(struct gma_clock_t)); return true; } #define FIFO_PIPEA (1 << 0) #define FIFO_PIPEB (1 << 1) static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe) { struct drm_crtc *crtc; struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct gma_crtc *gma_crtc = NULL; crtc = dev_priv->pipe_to_crtc_mapping[pipe]; gma_crtc = to_gma_crtc(crtc); if (crtc->primary->fb == NULL || !gma_crtc->active) return false; return true; } void cdv_disable_sr(struct drm_device *dev) { if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) { /* Disable self-refresh before adjust WM */ REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN)); REG_READ(FW_BLC_SELF); gma_wait_for_vblank(dev); /* Cedarview workaround to write ovelay plane, which force to leave * MAX_FIFO state. */ REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/); REG_READ(OV_OVADD); gma_wait_for_vblank(dev); } } void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct gma_crtc *gma_crtc = to_gma_crtc(crtc); /* Is only one pipe enabled? */ if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) { u32 fw; fw = REG_READ(DSPFW1); fw &= ~DSP_FIFO_SR_WM_MASK; fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT); fw &= ~CURSOR_B_FIFO_WM_MASK; fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT); REG_WRITE(DSPFW1, fw); fw = REG_READ(DSPFW2); fw &= ~CURSOR_A_FIFO_WM_MASK; fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT); fw &= ~DSP_PLANE_C_FIFO_WM_MASK; fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT); REG_WRITE(DSPFW2, fw); REG_WRITE(DSPFW3, 0x36000000); /* ignore FW4 */ /* Is pipe b lvds ? */ if (gma_crtc->pipe == 1 && gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { REG_WRITE(DSPFW5, 0x00040330); } else { fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) | (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) | (3 << CURSOR_B_FIFO_WM1_SHIFT) | (4 << CURSOR_FIFO_SR_WM1_SHIFT); REG_WRITE(DSPFW5, fw); } REG_WRITE(DSPFW6, 0x10); gma_wait_for_vblank(dev); /* enable self-refresh for single pipe active */ REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); REG_READ(FW_BLC_SELF); gma_wait_for_vblank(dev); } else { /* HW team suggested values... */ REG_WRITE(DSPFW1, 0x3f880808); REG_WRITE(DSPFW2, 0x0b020202); REG_WRITE(DSPFW3, 0x24000000); REG_WRITE(DSPFW4, 0x08030202); REG_WRITE(DSPFW5, 0x01010101); REG_WRITE(DSPFW6, 0x1d0); gma_wait_for_vblank(dev); dev_priv->ops->disable_sr(dev); } } /* * Return the pipe currently connected to the panel fitter, * or -1 if the panel fitter is not present or not in use */ static int cdv_intel_panel_fitter_pipe(struct drm_device *dev) { u32 pfit_control; pfit_control = REG_READ(PFIT_CONTROL); /* See if the panel fitter is in use */ if ((pfit_control & PFIT_ENABLE) == 0) return -1; return (pfit_control >> 29) & 0x3; } static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; int refclk; struct gma_clock_t clock; u32 dpll = 0, dspcntr, pipeconf; bool ok; bool is_lvds = false; bool is_dp = false; struct drm_connector_list_iter conn_iter; struct drm_connector *connector; const struct gma_limit_t *limit; u32 ddi_select = 0; bool is_edp = false; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); if (!connector->encoder || connector->encoder->crtc != crtc) continue; ddi_select = gma_encoder->ddi_select; switch (gma_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_ANALOG: case INTEL_OUTPUT_HDMI: break; case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; case INTEL_OUTPUT_EDP: is_edp = true; break; default: drm_connector_list_iter_end(&conn_iter); DRM_ERROR("invalid output type.\n"); return 0; } break; } drm_connector_list_iter_end(&conn_iter); if (dev_priv->dplla_96mhz) /* low-end sku, 96/100 mhz */ refclk = 96000; else /* high-end sku, 27/100 mhz */ refclk = 27000; if (is_dp || is_edp) { /* * Based on the spec the low-end SKU has only CRT/LVDS. So it is * unnecessary to consider it for DP/eDP. * On the high-end SKU, it will use the 27/100M reference clk * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise * it will be 27MHz. From the VBIOS code it seems that the pipe A choose * 27MHz for DP/eDP while the Pipe B chooses the 100MHz. */ if (pipe == 0) refclk = 27000; else refclk = 100000; } if (is_lvds && dev_priv->lvds_use_ssc) { refclk = dev_priv->lvds_ssc_freq * 1000; DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq); } drm_mode_debug_printmodeline(adjusted_mode); limit = gma_crtc->clock_funcs->limit(crtc, refclk); ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock); if (!ok) { DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", adjusted_mode->clock, clock.dot); return 0; } dpll = DPLL_VGA_MODE_DIS; if (is_dp || is_edp) { cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode); } else { REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0); REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0); REG_WRITE(PIPE_DP_LINK_M(pipe), 0); REG_WRITE(PIPE_DP_LINK_N(pipe), 0); } dpll |= DPLL_SYNCLOCK_ENABLE; /* if (is_lvds) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; */ /* dpll |= (2 << 11); */ /* setup pipeconf */ pipeconf = REG_READ(map->conf); pipeconf &= ~(PIPE_BPC_MASK); if (is_edp) { switch (dev_priv->edp.bpp) { case 24: pipeconf |= PIPE_8BPC; break; case 18: pipeconf |= PIPE_6BPC; break; case 30: pipeconf |= PIPE_10BPC; break; default: pipeconf |= PIPE_8BPC; break; } } else if (is_lvds) { /* the BPC will be 6 if it is 18-bit LVDS panel */ if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) pipeconf |= PIPE_8BPC; else pipeconf |= PIPE_6BPC; } else pipeconf |= PIPE_8BPC; /* Set up the display plane register */ dspcntr = DISPPLANE_GAMMA_ENABLE; if (pipe == 0) dspcntr |= DISPPLANE_SEL_PIPE_A; else dspcntr |= DISPPLANE_SEL_PIPE_B; dspcntr |= DISPLAY_PLANE_ENABLE; pipeconf |= PIPEACONF_ENABLE; REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE); REG_READ(map->dpll); cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select); udelay(150); /* The LVDS pin pair needs to be on before the DPLLs are enabled. * This is an exception to the general rule that mode_set doesn't turn * things on. */ if (is_lvds) { u32 lvds = REG_READ(LVDS); lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT; /* Set the B0-B3 data pairs corresponding to * whether we're going to * set the DPLLs for dual-channel mode or not. */ if (clock.p2 == 7) lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; else lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) * appropriately here, but we need to look more * thoroughly into how panels behave in the two modes. */ REG_WRITE(LVDS, lvds); REG_READ(LVDS); } dpll |= DPLL_VCO_ENABLE; /* Disable the panel fitter if it was on our pipe */ if (cdv_intel_panel_fitter_pipe(dev) == pipe) REG_WRITE(PFIT_CONTROL, 0); DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); drm_mode_debug_printmodeline(mode); REG_WRITE(map->dpll, (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE); REG_READ(map->dpll); /* Wait for the clocks to stabilize. */ udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */ if (!(REG_READ(map->dpll) & DPLL_LOCK)) { dev_err(dev->dev, "Failed to get DPLL lock\n"); return -EBUSY; } { int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); } REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | ((adjusted_mode->crtc_vblank_end - 1) << 16)); REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ REG_WRITE(map->size, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); REG_WRITE(map->pos, 0); REG_WRITE(map->src, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); REG_WRITE(map->conf, pipeconf); REG_READ(map->conf); gma_wait_for_vblank(dev); REG_WRITE(map->cntr, dspcntr); /* Flush the plane changes */ { const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->mode_set_base(crtc, x, y, old_fb); } gma_wait_for_vblank(dev); return 0; } /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ /* FIXME: why are we using this, should it be cdv_ in this tree ? */ static void i8xx_clock(int refclk, struct gma_clock_t *clock) { clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / (clock->n + 2); clock->dot = clock->vco / clock->p; } /* Returns the clock of the currently programmed mode of the given pipe. */ static int cdv_intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; u32 dpll; u32 fp; struct gma_clock_t clock; bool is_lvds; struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; if (gma_power_begin(dev, false)) { dpll = REG_READ(map->dpll); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = REG_READ(map->fp0); else fp = REG_READ(map->fp1); is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); gma_power_end(dev); } else { dpll = p->dpll; if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = p->fp0; else fp = p->fp1; is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN); } clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); if (clock.p1 == 0) { clock.p1 = 4; dev_err(dev->dev, "PLL %d\n", dpll); } clock.p2 = 14; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { /* XXX: might not be 66MHz */ i8xx_clock(66000, &clock); } else i8xx_clock(48000, &clock); } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; i8xx_clock(48000, &clock); } /* XXX: It would be nice to validate the clocks, but we can't reuse * i830PllIsValid() because it relies on the xf86_config connector * configuration being accurate, which it isn't necessarily. */ return clock.dot; } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; const struct psb_offset *map = &dev_priv->regmap[pipe]; struct drm_display_mode *mode; int htot; int hsync; int vtot; int vsync; if (gma_power_begin(dev, false)) { htot = REG_READ(map->htotal); hsync = REG_READ(map->hsync); vtot = REG_READ(map->vtotal); vsync = REG_READ(map->vsync); gma_power_end(dev); } else { htot = p->htotal; hsync = p->hsync; vtot = p->vtotal; vsync = p->vsync; } mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; mode->clock = cdv_intel_crtc_clock_get(dev, crtc); mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); drm_mode_set_crtcinfo(mode, 0); return mode; } const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = { .dpms = gma_crtc_dpms, .mode_set = cdv_intel_crtc_mode_set, .mode_set_base = gma_pipe_set_base, .prepare = gma_crtc_prepare, .commit = gma_crtc_commit, .disable = gma_crtc_disable, }; const struct gma_clock_funcs cdv_clock_funcs = { .clock = cdv_intel_clock, .limit = cdv_intel_limit, .pll_is_valid = gma_pll_is_valid, }; |