Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// SPDX-License-Identifier: GPL-2.0
/*
 * vgic_irq.c - Test userspace injection of IRQs
 *
 * This test validates the injection of IRQs from userspace using various
 * methods (e.g., KVM_IRQ_LINE) and modes (e.g., EOI). The guest "asks" the
 * host to inject a specific intid via a GUEST_SYNC call, and then checks that
 * it received it.
 */

#include <asm/kvm.h>
#include <asm/kvm_para.h>
#include <sys/eventfd.h>
#include <linux/sizes.h>

#include "processor.h"
#include "test_util.h"
#include "kvm_util.h"
#include "gic.h"
#include "gic_v3.h"
#include "vgic.h"

#define GICD_BASE_GPA		0x08000000ULL
#define GICR_BASE_GPA		0x080A0000ULL

/*
 * Stores the user specified args; it's passed to the guest and to every test
 * function.
 */
struct test_args {
	uint32_t nr_irqs; /* number of KVM supported IRQs. */
	bool eoi_split; /* 1 is eoir+dir, 0 is eoir only */
	bool level_sensitive; /* 1 is level, 0 is edge */
	int kvm_max_routes; /* output of KVM_CAP_IRQ_ROUTING */
	bool kvm_supports_irqfd; /* output of KVM_CAP_IRQFD */
};

/*
 * KVM implements 32 priority levels:
 * 0x00 (highest priority) - 0xF8 (lowest priority), in steps of 8
 *
 * Note that these macros will still be correct in the case that KVM implements
 * more priority levels. Also note that 32 is the minimum for GICv3 and GICv2.
 */
#define KVM_NUM_PRIOS		32
#define KVM_PRIO_SHIFT		3 /* steps of 8 = 1 << 3 */
#define KVM_PRIO_STEPS		(1 << KVM_PRIO_SHIFT) /* 8 */
#define LOWEST_PRIO		(KVM_NUM_PRIOS - 1)
#define CPU_PRIO_MASK		(LOWEST_PRIO << KVM_PRIO_SHIFT)	/* 0xf8 */
#define IRQ_DEFAULT_PRIO	(LOWEST_PRIO - 1)
#define IRQ_DEFAULT_PRIO_REG	(IRQ_DEFAULT_PRIO << KVM_PRIO_SHIFT) /* 0xf0 */

static void *dist = (void *)GICD_BASE_GPA;
static void *redist = (void *)GICR_BASE_GPA;

/*
 * The kvm_inject_* utilities are used by the guest to ask the host to inject
 * interrupts (e.g., using the KVM_IRQ_LINE ioctl).
 */

typedef enum {
	KVM_INJECT_EDGE_IRQ_LINE = 1,
	KVM_SET_IRQ_LINE,
	KVM_SET_IRQ_LINE_HIGH,
	KVM_SET_LEVEL_INFO_HIGH,
	KVM_INJECT_IRQFD,
	KVM_WRITE_ISPENDR,
	KVM_WRITE_ISACTIVER,
} kvm_inject_cmd;

struct kvm_inject_args {
	kvm_inject_cmd cmd;
	uint32_t first_intid;
	uint32_t num;
	int level;
	bool expect_failure;
};

/* Used on the guest side to perform the hypercall. */
static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid,
		uint32_t num, int level, bool expect_failure);

/* Used on the host side to get the hypercall info. */
static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc,
		struct kvm_inject_args *args);

#define _KVM_INJECT_MULTI(cmd, intid, num, expect_failure)			\
	kvm_inject_call(cmd, intid, num, -1 /* not used */, expect_failure)

#define KVM_INJECT_MULTI(cmd, intid, num)					\
	_KVM_INJECT_MULTI(cmd, intid, num, false)

#define _KVM_INJECT(cmd, intid, expect_failure)					\
	_KVM_INJECT_MULTI(cmd, intid, 1, expect_failure)

#define KVM_INJECT(cmd, intid)							\
	_KVM_INJECT_MULTI(cmd, intid, 1, false)

#define KVM_ACTIVATE(cmd, intid)						\
	kvm_inject_call(cmd, intid, 1, 1, false);

struct kvm_inject_desc {
	kvm_inject_cmd cmd;
	/* can inject PPIs, PPIs, and/or SPIs. */
	bool sgi, ppi, spi;
};

static struct kvm_inject_desc inject_edge_fns[] = {
	/*                                      sgi    ppi    spi */
	{ KVM_INJECT_EDGE_IRQ_LINE,		false, false, true },
	{ KVM_INJECT_IRQFD,			false, false, true },
	{ KVM_WRITE_ISPENDR,			true,  false, true },
	{ 0, },
};

static struct kvm_inject_desc inject_level_fns[] = {
	/*                                      sgi    ppi    spi */
	{ KVM_SET_IRQ_LINE_HIGH,		false, true,  true },
	{ KVM_SET_LEVEL_INFO_HIGH,		false, true,  true },
	{ KVM_INJECT_IRQFD,			false, false, true },
	{ KVM_WRITE_ISPENDR,			false, true,  true },
	{ 0, },
};

static struct kvm_inject_desc set_active_fns[] = {
	/*                                      sgi    ppi    spi */
	{ KVM_WRITE_ISACTIVER,			true,  true,  true },
	{ 0, },
};

#define for_each_inject_fn(t, f)						\
	for ((f) = (t); (f)->cmd; (f)++)

#define for_each_supported_inject_fn(args, t, f)				\
	for_each_inject_fn(t, f)						\
		if ((args)->kvm_supports_irqfd || (f)->cmd != KVM_INJECT_IRQFD)

#define for_each_supported_activate_fn(args, t, f)				\
	for_each_supported_inject_fn((args), (t), (f))

/* Shared between the guest main thread and the IRQ handlers. */
volatile uint64_t irq_handled;
volatile uint32_t irqnr_received[MAX_SPI + 1];

static void reset_stats(void)
{
	int i;

	irq_handled = 0;
	for (i = 0; i <= MAX_SPI; i++)
		irqnr_received[i] = 0;
}

static uint64_t gic_read_ap1r0(void)
{
	uint64_t reg = read_sysreg_s(SYS_ICV_AP1R0_EL1);

	dsb(sy);
	return reg;
}

static void gic_write_ap1r0(uint64_t val)
{
	write_sysreg_s(val, SYS_ICV_AP1R0_EL1);
	isb();
}

static void guest_set_irq_line(uint32_t intid, uint32_t level);

static void guest_irq_generic_handler(bool eoi_split, bool level_sensitive)
{
	uint32_t intid = gic_get_and_ack_irq();

	if (intid == IAR_SPURIOUS)
		return;

	GUEST_ASSERT(gic_irq_get_active(intid));

	if (!level_sensitive)
		GUEST_ASSERT(!gic_irq_get_pending(intid));

	if (level_sensitive)
		guest_set_irq_line(intid, 0);

	GUEST_ASSERT(intid < MAX_SPI);
	irqnr_received[intid] += 1;
	irq_handled += 1;

	gic_set_eoi(intid);
	GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
	if (eoi_split)
		gic_set_dir(intid);

	GUEST_ASSERT(!gic_irq_get_active(intid));
	GUEST_ASSERT(!gic_irq_get_pending(intid));
}

static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid,
		uint32_t num, int level, bool expect_failure)
{
	struct kvm_inject_args args = {
		.cmd = cmd,
		.first_intid = first_intid,
		.num = num,
		.level = level,
		.expect_failure = expect_failure,
	};
	GUEST_SYNC(&args);
}

#define GUEST_ASSERT_IAR_EMPTY()						\
do { 										\
	uint32_t _intid;							\
	_intid = gic_get_and_ack_irq();						\
	GUEST_ASSERT(_intid == 0 || _intid == IAR_SPURIOUS);			\
} while (0)

#define CAT_HELPER(a, b) a ## b
#define CAT(a, b) CAT_HELPER(a, b)
#define PREFIX guest_irq_handler_
#define GUEST_IRQ_HANDLER_NAME(split, lev) CAT(PREFIX, CAT(split, lev))
#define GENERATE_GUEST_IRQ_HANDLER(split, lev)					\
static void CAT(PREFIX, CAT(split, lev))(struct ex_regs *regs)			\
{										\
	guest_irq_generic_handler(split, lev);					\
}

GENERATE_GUEST_IRQ_HANDLER(0, 0);
GENERATE_GUEST_IRQ_HANDLER(0, 1);
GENERATE_GUEST_IRQ_HANDLER(1, 0);
GENERATE_GUEST_IRQ_HANDLER(1, 1);

static void (*guest_irq_handlers[2][2])(struct ex_regs *) = {
	{GUEST_IRQ_HANDLER_NAME(0, 0), GUEST_IRQ_HANDLER_NAME(0, 1),},
	{GUEST_IRQ_HANDLER_NAME(1, 0), GUEST_IRQ_HANDLER_NAME(1, 1),},
};

static void reset_priorities(struct test_args *args)
{
	int i;

	for (i = 0; i < args->nr_irqs; i++)
		gic_set_priority(i, IRQ_DEFAULT_PRIO_REG);
}

static void guest_set_irq_line(uint32_t intid, uint32_t level)
{
	kvm_inject_call(KVM_SET_IRQ_LINE, intid, 1, level, false);
}

static void test_inject_fail(struct test_args *args,
		uint32_t intid, kvm_inject_cmd cmd)
{
	reset_stats();

	_KVM_INJECT(cmd, intid, true);
	/* no IRQ to handle on entry */

	GUEST_ASSERT_EQ(irq_handled, 0);
	GUEST_ASSERT_IAR_EMPTY();
}

static void guest_inject(struct test_args *args,
		uint32_t first_intid, uint32_t num,
		kvm_inject_cmd cmd)
{
	uint32_t i;

	reset_stats();

	/* Cycle over all priorities to make things more interesting. */
	for (i = first_intid; i < num + first_intid; i++)
		gic_set_priority(i, (i % (KVM_NUM_PRIOS - 1)) << 3);

	asm volatile("msr daifset, #2" : : : "memory");
	KVM_INJECT_MULTI(cmd, first_intid, num);

	while (irq_handled < num) {
		asm volatile("wfi\n"
			     "msr daifclr, #2\n"
			     /* handle IRQ */
			     "msr daifset, #2\n"
			     : : : "memory");
	}
	asm volatile("msr daifclr, #2" : : : "memory");

	GUEST_ASSERT_EQ(irq_handled, num);
	for (i = first_intid; i < num + first_intid; i++)
		GUEST_ASSERT_EQ(irqnr_received[i], 1);
	GUEST_ASSERT_IAR_EMPTY();

	reset_priorities(args);
}

/*
 * Restore the active state of multiple concurrent IRQs (given by
 * concurrent_irqs).  This does what a live-migration would do on the
 * destination side assuming there are some active IRQs that were not
 * deactivated yet.
 */
static void guest_restore_active(struct test_args *args,
		uint32_t first_intid, uint32_t num,
		kvm_inject_cmd cmd)
{
	uint32_t prio, intid, ap1r;
	int i;

	/*
	 * Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs
	 * in descending order, so intid+1 can preempt intid.
	 */
	for (i = 0, prio = (num - 1) * 8; i < num; i++, prio -= 8) {
		GUEST_ASSERT(prio >= 0);
		intid = i + first_intid;
		gic_set_priority(intid, prio);
	}

	/*
	 * In a real migration, KVM would restore all GIC state before running
	 * guest code.
	 */
	for (i = 0; i < num; i++) {
		intid = i + first_intid;
		KVM_ACTIVATE(cmd, intid);
		ap1r = gic_read_ap1r0();
		ap1r |= 1U << i;
		gic_write_ap1r0(ap1r);
	}

	/* This is where the "migration" would occur. */

	/* finish handling the IRQs starting with the highest priority one. */
	for (i = 0; i < num; i++) {
		intid = num - i - 1 + first_intid;
		gic_set_eoi(intid);
		if (args->eoi_split)
			gic_set_dir(intid);
	}

	for (i = 0; i < num; i++)
		GUEST_ASSERT(!gic_irq_get_active(i + first_intid));
	GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
	GUEST_ASSERT_IAR_EMPTY();
}

/*
 * Polls the IAR until it's not a spurious interrupt.
 *
 * This function should only be used in test_inject_preemption (with IRQs
 * masked).
 */
static uint32_t wait_for_and_activate_irq(void)
{
	uint32_t intid;

	do {
		asm volatile("wfi" : : : "memory");
		intid = gic_get_and_ack_irq();
	} while (intid == IAR_SPURIOUS);

	return intid;
}

/*
 * Inject multiple concurrent IRQs (num IRQs starting at first_intid) and
 * handle them without handling the actual exceptions.  This is done by masking
 * interrupts for the whole test.
 */
static void test_inject_preemption(struct test_args *args,
		uint32_t first_intid, int num,
		kvm_inject_cmd cmd)
{
	uint32_t intid, prio, step = KVM_PRIO_STEPS;
	int i;

	/* Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs
	 * in descending order, so intid+1 can preempt intid.
	 */
	for (i = 0, prio = (num - 1) * step; i < num; i++, prio -= step) {
		GUEST_ASSERT(prio >= 0);
		intid = i + first_intid;
		gic_set_priority(intid, prio);
	}

	local_irq_disable();

	for (i = 0; i < num; i++) {
		uint32_t tmp;
		intid = i + first_intid;
		KVM_INJECT(cmd, intid);
		/* Each successive IRQ will preempt the previous one. */
		tmp = wait_for_and_activate_irq();
		GUEST_ASSERT_EQ(tmp, intid);
		if (args->level_sensitive)
			guest_set_irq_line(intid, 0);
	}

	/* finish handling the IRQs starting with the highest priority one. */
	for (i = 0; i < num; i++) {
		intid = num - i - 1 + first_intid;
		gic_set_eoi(intid);
		if (args->eoi_split)
			gic_set_dir(intid);
	}

	local_irq_enable();

	for (i = 0; i < num; i++)
		GUEST_ASSERT(!gic_irq_get_active(i + first_intid));
	GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
	GUEST_ASSERT_IAR_EMPTY();

	reset_priorities(args);
}

static void test_injection(struct test_args *args, struct kvm_inject_desc *f)
{
	uint32_t nr_irqs = args->nr_irqs;

	if (f->sgi) {
		guest_inject(args, MIN_SGI, 1, f->cmd);
		guest_inject(args, 0, 16, f->cmd);
	}

	if (f->ppi)
		guest_inject(args, MIN_PPI, 1, f->cmd);

	if (f->spi) {
		guest_inject(args, MIN_SPI, 1, f->cmd);
		guest_inject(args, nr_irqs - 1, 1, f->cmd);
		guest_inject(args, MIN_SPI, nr_irqs - MIN_SPI, f->cmd);
	}
}

static void test_injection_failure(struct test_args *args,
		struct kvm_inject_desc *f)
{
	uint32_t bad_intid[] = { args->nr_irqs, 1020, 1024, 1120, 5120, ~0U, };
	int i;

	for (i = 0; i < ARRAY_SIZE(bad_intid); i++)
		test_inject_fail(args, bad_intid[i], f->cmd);
}

static void test_preemption(struct test_args *args, struct kvm_inject_desc *f)
{
	/*
	 * Test up to 4 levels of preemption. The reason is that KVM doesn't
	 * currently implement the ability to have more than the number-of-LRs
	 * number of concurrently active IRQs. The number of LRs implemented is
	 * IMPLEMENTATION DEFINED, however, it seems that most implement 4.
	 */
	if (f->sgi)
		test_inject_preemption(args, MIN_SGI, 4, f->cmd);

	if (f->ppi)
		test_inject_preemption(args, MIN_PPI, 4, f->cmd);

	if (f->spi)
		test_inject_preemption(args, MIN_SPI, 4, f->cmd);
}

static void test_restore_active(struct test_args *args, struct kvm_inject_desc *f)
{
	/* Test up to 4 active IRQs. Same reason as in test_preemption. */
	if (f->sgi)
		guest_restore_active(args, MIN_SGI, 4, f->cmd);

	if (f->ppi)
		guest_restore_active(args, MIN_PPI, 4, f->cmd);

	if (f->spi)
		guest_restore_active(args, MIN_SPI, 4, f->cmd);
}

static void guest_code(struct test_args *args)
{
	uint32_t i, nr_irqs = args->nr_irqs;
	bool level_sensitive = args->level_sensitive;
	struct kvm_inject_desc *f, *inject_fns;

	gic_init(GIC_V3, 1, dist, redist);

	for (i = 0; i < nr_irqs; i++)
		gic_irq_enable(i);

	for (i = MIN_SPI; i < nr_irqs; i++)
		gic_irq_set_config(i, !level_sensitive);

	gic_set_eoi_split(args->eoi_split);

	reset_priorities(args);
	gic_set_priority_mask(CPU_PRIO_MASK);

	inject_fns  = level_sensitive ? inject_level_fns
				      : inject_edge_fns;

	local_irq_enable();

	/* Start the tests. */
	for_each_supported_inject_fn(args, inject_fns, f) {
		test_injection(args, f);
		test_preemption(args, f);
		test_injection_failure(args, f);
	}

	/*
	 * Restore the active state of IRQs. This would happen when live
	 * migrating IRQs in the middle of being handled.
	 */
	for_each_supported_activate_fn(args, set_active_fns, f)
		test_restore_active(args, f);

	GUEST_DONE();
}

static void kvm_irq_line_check(struct kvm_vm *vm, uint32_t intid, int level,
			struct test_args *test_args, bool expect_failure)
{
	int ret;

	if (!expect_failure) {
		kvm_arm_irq_line(vm, intid, level);
	} else {
		/* The interface doesn't allow larger intid's. */
		if (intid > KVM_ARM_IRQ_NUM_MASK)
			return;

		ret = _kvm_arm_irq_line(vm, intid, level);
		TEST_ASSERT(ret != 0 && errno == EINVAL,
				"Bad intid %i did not cause KVM_IRQ_LINE "
				"error: rc: %i errno: %i", intid, ret, errno);
	}
}

void kvm_irq_set_level_info_check(int gic_fd, uint32_t intid, int level,
			bool expect_failure)
{
	if (!expect_failure) {
		kvm_irq_set_level_info(gic_fd, intid, level);
	} else {
		int ret = _kvm_irq_set_level_info(gic_fd, intid, level);
		/*
		 * The kernel silently fails for invalid SPIs and SGIs (which
		 * are not level-sensitive). It only checks for intid to not
		 * spill over 1U << 10 (the max reserved SPI). Also, callers
		 * are supposed to mask the intid with 0x3ff (1023).
		 */
		if (intid > VGIC_MAX_RESERVED)
			TEST_ASSERT(ret != 0 && errno == EINVAL,
				"Bad intid %i did not cause VGIC_GRP_LEVEL_INFO "
				"error: rc: %i errno: %i", intid, ret, errno);
		else
			TEST_ASSERT(!ret, "KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO "
				"for intid %i failed, rc: %i errno: %i",
				intid, ret, errno);
	}
}

static void kvm_set_gsi_routing_irqchip_check(struct kvm_vm *vm,
		uint32_t intid, uint32_t num, uint32_t kvm_max_routes,
		bool expect_failure)
{
	struct kvm_irq_routing *routing;
	int ret;
	uint64_t i;

	assert(num <= kvm_max_routes && kvm_max_routes <= KVM_MAX_IRQ_ROUTES);

	routing = kvm_gsi_routing_create();
	for (i = intid; i < (uint64_t)intid + num; i++)
		kvm_gsi_routing_irqchip_add(routing, i - MIN_SPI, i - MIN_SPI);

	if (!expect_failure) {
		kvm_gsi_routing_write(vm, routing);
	} else {
		ret = _kvm_gsi_routing_write(vm, routing);
		/* The kernel only checks e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS */
		if (((uint64_t)intid + num - 1 - MIN_SPI) >= KVM_IRQCHIP_NUM_PINS)
			TEST_ASSERT(ret != 0 && errno == EINVAL,
				"Bad intid %u did not cause KVM_SET_GSI_ROUTING "
				"error: rc: %i errno: %i", intid, ret, errno);
		else
			TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING "
				"for intid %i failed, rc: %i errno: %i",
				intid, ret, errno);
	}
}

static void kvm_irq_write_ispendr_check(int gic_fd, uint32_t intid,
					struct kvm_vcpu *vcpu,
					bool expect_failure)
{
	/*
	 * Ignore this when expecting failure as invalid intids will lead to
	 * either trying to inject SGIs when we configured the test to be
	 * level_sensitive (or the reverse), or inject large intids which
	 * will lead to writing above the ISPENDR register space (and we
	 * don't want to do that either).
	 */
	if (!expect_failure)
		kvm_irq_write_ispendr(gic_fd, intid, vcpu);
}

static void kvm_routing_and_irqfd_check(struct kvm_vm *vm,
		uint32_t intid, uint32_t num, uint32_t kvm_max_routes,
		bool expect_failure)
{
	int fd[MAX_SPI];
	uint64_t val;
	int ret, f;
	uint64_t i;

	/*
	 * There is no way to try injecting an SGI or PPI as the interface
	 * starts counting from the first SPI (above the private ones), so just
	 * exit.
	 */
	if (INTID_IS_SGI(intid) || INTID_IS_PPI(intid))
		return;

	kvm_set_gsi_routing_irqchip_check(vm, intid, num,
			kvm_max_routes, expect_failure);

	/*
	 * If expect_failure, then just to inject anyway. These
	 * will silently fail. And in any case, the guest will check
	 * that no actual interrupt was injected for those cases.
	 */

	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
		fd[f] = eventfd(0, 0);
		TEST_ASSERT(fd[f] != -1, __KVM_SYSCALL_ERROR("eventfd()", fd[f]));
	}

	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
		struct kvm_irqfd irqfd = {
			.fd  = fd[f],
			.gsi = i - MIN_SPI,
		};
		assert(i <= (uint64_t)UINT_MAX);
		vm_ioctl(vm, KVM_IRQFD, &irqfd);
	}

	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
		val = 1;
		ret = write(fd[f], &val, sizeof(uint64_t));
		TEST_ASSERT(ret == sizeof(uint64_t),
			    __KVM_SYSCALL_ERROR("write()", ret));
	}

	for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++)
		close(fd[f]);
}

/* handles the valid case: intid=0xffffffff num=1 */
#define for_each_intid(first, num, tmp, i)					\
	for ((tmp) = (i) = (first);						\
		(tmp) < (uint64_t)(first) + (uint64_t)(num);			\
		(tmp)++, (i)++)

static void run_guest_cmd(struct kvm_vcpu *vcpu, int gic_fd,
			  struct kvm_inject_args *inject_args,
			  struct test_args *test_args)
{
	kvm_inject_cmd cmd = inject_args->cmd;
	uint32_t intid = inject_args->first_intid;
	uint32_t num = inject_args->num;
	int level = inject_args->level;
	bool expect_failure = inject_args->expect_failure;
	struct kvm_vm *vm = vcpu->vm;
	uint64_t tmp;
	uint32_t i;

	/* handles the valid case: intid=0xffffffff num=1 */
	assert(intid < UINT_MAX - num || num == 1);

	switch (cmd) {
	case KVM_INJECT_EDGE_IRQ_LINE:
		for_each_intid(intid, num, tmp, i)
			kvm_irq_line_check(vm, i, 1, test_args,
					expect_failure);
		for_each_intid(intid, num, tmp, i)
			kvm_irq_line_check(vm, i, 0, test_args,
					expect_failure);
		break;
	case KVM_SET_IRQ_LINE:
		for_each_intid(intid, num, tmp, i)
			kvm_irq_line_check(vm, i, level, test_args,
					expect_failure);
		break;
	case KVM_SET_IRQ_LINE_HIGH:
		for_each_intid(intid, num, tmp, i)
			kvm_irq_line_check(vm, i, 1, test_args,
					expect_failure);
		break;
	case KVM_SET_LEVEL_INFO_HIGH:
		for_each_intid(intid, num, tmp, i)
			kvm_irq_set_level_info_check(gic_fd, i, 1,
					expect_failure);
		break;
	case KVM_INJECT_IRQFD:
		kvm_routing_and_irqfd_check(vm, intid, num,
					test_args->kvm_max_routes,
					expect_failure);
		break;
	case KVM_WRITE_ISPENDR:
		for (i = intid; i < intid + num; i++)
			kvm_irq_write_ispendr_check(gic_fd, i, vcpu,
						    expect_failure);
		break;
	case KVM_WRITE_ISACTIVER:
		for (i = intid; i < intid + num; i++)
			kvm_irq_write_isactiver(gic_fd, i, vcpu);
		break;
	default:
		break;
	}
}

static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc,
		struct kvm_inject_args *args)
{
	struct kvm_inject_args *kvm_args_hva;
	vm_vaddr_t kvm_args_gva;

	kvm_args_gva = uc->args[1];
	kvm_args_hva = (struct kvm_inject_args *)addr_gva2hva(vm, kvm_args_gva);
	memcpy(args, kvm_args_hva, sizeof(struct kvm_inject_args));
}

static void print_args(struct test_args *args)
{
	printf("nr-irqs=%d level-sensitive=%d eoi-split=%d\n",
			args->nr_irqs, args->level_sensitive,
			args->eoi_split);
}

static void test_vgic(uint32_t nr_irqs, bool level_sensitive, bool eoi_split)
{
	struct ucall uc;
	int gic_fd;
	struct kvm_vcpu *vcpu;
	struct kvm_vm *vm;
	struct kvm_inject_args inject_args;
	vm_vaddr_t args_gva;

	struct test_args args = {
		.nr_irqs = nr_irqs,
		.level_sensitive = level_sensitive,
		.eoi_split = eoi_split,
		.kvm_max_routes = kvm_check_cap(KVM_CAP_IRQ_ROUTING),
		.kvm_supports_irqfd = kvm_check_cap(KVM_CAP_IRQFD),
	};

	print_args(&args);

	vm = vm_create_with_one_vcpu(&vcpu, guest_code);

	vm_init_descriptor_tables(vm);
	vcpu_init_descriptor_tables(vcpu);

	/* Setup the guest args page (so it gets the args). */
	args_gva = vm_vaddr_alloc_page(vm);
	memcpy(addr_gva2hva(vm, args_gva), &args, sizeof(args));
	vcpu_args_set(vcpu, 1, args_gva);

	gic_fd = vgic_v3_setup(vm, 1, nr_irqs,
			GICD_BASE_GPA, GICR_BASE_GPA);
	__TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3, skipping");

	vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT,
		guest_irq_handlers[args.eoi_split][args.level_sensitive]);

	while (1) {
		vcpu_run(vcpu);

		switch (get_ucall(vcpu, &uc)) {
		case UCALL_SYNC:
			kvm_inject_get_call(vm, &uc, &inject_args);
			run_guest_cmd(vcpu, gic_fd, &inject_args, &args);
			break;
		case UCALL_ABORT:
			REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx");
			break;
		case UCALL_DONE:
			goto done;
		default:
			TEST_FAIL("Unknown ucall %lu", uc.cmd);
		}
	}

done:
	close(gic_fd);
	kvm_vm_free(vm);
}

static void help(const char *name)
{
	printf(
	"\n"
	"usage: %s [-n num_irqs] [-e eoi_split] [-l level_sensitive]\n", name);
	printf(" -n: specify number of IRQs to setup the vgic with. "
		"It has to be a multiple of 32 and between 64 and 1024.\n");
	printf(" -e: if 1 then EOI is split into a write to DIR on top "
		"of writing EOI.\n");
	printf(" -l: specify whether the IRQs are level-sensitive (1) or not (0).");
	puts("");
	exit(1);
}

int main(int argc, char **argv)
{
	uint32_t nr_irqs = 64;
	bool default_args = true;
	bool level_sensitive = false;
	int opt;
	bool eoi_split = false;

	while ((opt = getopt(argc, argv, "hn:e:l:")) != -1) {
		switch (opt) {
		case 'n':
			nr_irqs = atoi_non_negative("Number of IRQs", optarg);
			if (nr_irqs > 1024 || nr_irqs % 32)
				help(argv[0]);
			break;
		case 'e':
			eoi_split = (bool)atoi_paranoid(optarg);
			default_args = false;
			break;
		case 'l':
			level_sensitive = (bool)atoi_paranoid(optarg);
			default_args = false;
			break;
		case 'h':
		default:
			help(argv[0]);
			break;
		}
	}

	/*
	 * If the user just specified nr_irqs and/or gic_version, then run all
	 * combinations.
	 */
	if (default_args) {
		test_vgic(nr_irqs, false /* level */, false /* eoi_split */);
		test_vgic(nr_irqs, false /* level */, true /* eoi_split */);
		test_vgic(nr_irqs, true /* level */, false /* eoi_split */);
		test_vgic(nr_irqs, true /* level */, true /* eoi_split */);
	} else {
		test_vgic(nr_irqs, level_sensitive, eoi_split);
	}

	return 0;
}