Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | // SPDX-License-Identifier: GPL-2.0-or-later /* mpihelp-div.c - MPI helper functions * Copyright (C) 1994, 1996 Free Software Foundation, Inc. * Copyright (C) 1998, 1999 Free Software Foundation, Inc. * * This file is part of GnuPG. * * Note: This code is heavily based on the GNU MP Library. * Actually it's the same code with only minor changes in the * way the data is stored; this is to support the abstraction * of an optional secure memory allocation which may be used * to avoid revealing of sensitive data due to paging etc. * The GNU MP Library itself is published under the LGPL; * however I decided to publish this code under the plain GPL. */ #include "mpi-internal.h" #include "longlong.h" #ifndef UMUL_TIME #define UMUL_TIME 1 #endif #ifndef UDIV_TIME #define UDIV_TIME UMUL_TIME #endif mpi_limb_t mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, mpi_limb_t divisor_limb) { mpi_size_t i; mpi_limb_t n1, n0, r; mpi_limb_t dummy __maybe_unused; /* Botch: Should this be handled at all? Rely on callers? */ if (!dividend_size) return 0; /* If multiplication is much faster than division, and the * dividend is large, pre-invert the divisor, and use * only multiplications in the inner loop. * * This test should be read: * Does it ever help to use udiv_qrnnd_preinv? * && Does what we save compensate for the inversion overhead? */ if (UDIV_TIME > (2 * UMUL_TIME + 6) && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { int normalization_steps; normalization_steps = count_leading_zeros(divisor_limb); if (normalization_steps) { mpi_limb_t divisor_limb_inverted; divisor_limb <<= normalization_steps; /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the * most significant bit (with weight 2**N) implicit. * * Special case for DIVISOR_LIMB == 100...000. */ if (!(divisor_limb << 1)) divisor_limb_inverted = ~(mpi_limb_t)0; else udiv_qrnnd(divisor_limb_inverted, dummy, -divisor_limb, 0, divisor_limb); n1 = dividend_ptr[dividend_size - 1]; r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); /* Possible optimization: * if (r == 0 * && divisor_limb > ((n1 << normalization_steps) * | (dividend_ptr[dividend_size - 2] >> ...))) * ...one division less... */ for (i = dividend_size - 2; i >= 0; i--) { n0 = dividend_ptr[i]; UDIV_QRNND_PREINV(dummy, r, r, ((n1 << normalization_steps) | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), divisor_limb, divisor_limb_inverted); n1 = n0; } UDIV_QRNND_PREINV(dummy, r, r, n1 << normalization_steps, divisor_limb, divisor_limb_inverted); return r >> normalization_steps; } else { mpi_limb_t divisor_limb_inverted; /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the * most significant bit (with weight 2**N) implicit. * * Special case for DIVISOR_LIMB == 100...000. */ if (!(divisor_limb << 1)) divisor_limb_inverted = ~(mpi_limb_t)0; else udiv_qrnnd(divisor_limb_inverted, dummy, -divisor_limb, 0, divisor_limb); i = dividend_size - 1; r = dividend_ptr[i]; if (r >= divisor_limb) r = 0; else i--; for ( ; i >= 0; i--) { n0 = dividend_ptr[i]; UDIV_QRNND_PREINV(dummy, r, r, n0, divisor_limb, divisor_limb_inverted); } return r; } } else { if (UDIV_NEEDS_NORMALIZATION) { int normalization_steps; normalization_steps = count_leading_zeros(divisor_limb); if (normalization_steps) { divisor_limb <<= normalization_steps; n1 = dividend_ptr[dividend_size - 1]; r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); /* Possible optimization: * if (r == 0 * && divisor_limb > ((n1 << normalization_steps) * | (dividend_ptr[dividend_size - 2] >> ...))) * ...one division less... */ for (i = dividend_size - 2; i >= 0; i--) { n0 = dividend_ptr[i]; udiv_qrnnd(dummy, r, r, ((n1 << normalization_steps) | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), divisor_limb); n1 = n0; } udiv_qrnnd(dummy, r, r, n1 << normalization_steps, divisor_limb); return r >> normalization_steps; } } /* No normalization needed, either because udiv_qrnnd doesn't require * it, or because DIVISOR_LIMB is already normalized. */ i = dividend_size - 1; r = dividend_ptr[i]; if (r >= divisor_limb) r = 0; else i--; for (; i >= 0; i--) { n0 = dividend_ptr[i]; udiv_qrnnd(dummy, r, r, n0, divisor_limb); } return r; } } /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write * the NSIZE-DSIZE least significant quotient limbs at QP * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is * non-zero, generate that many fraction bits and append them after the * other quotient limbs. * Return the most significant limb of the quotient, this is always 0 or 1. * * Preconditions: * 0. NSIZE >= DSIZE. * 1. The most significant bit of the divisor must be set. * 2. QP must either not overlap with the input operands at all, or * QP + DSIZE >= NP must hold true. (This means that it's * possible to put the quotient in the high part of NUM, right after the * remainder in NUM. * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. */ mpi_limb_t mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs, mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize) { mpi_limb_t most_significant_q_limb = 0; switch (dsize) { case 0: /* We are asked to divide by zero, so go ahead and do it! (To make the compiler not remove this statement, return the value.) */ /* * existing clients of this function have been modified * not to call it with dsize == 0, so this should not happen */ return 1 / dsize; case 1: { mpi_size_t i; mpi_limb_t n1; mpi_limb_t d; d = dp[0]; n1 = np[nsize - 1]; if (n1 >= d) { n1 -= d; most_significant_q_limb = 1; } qp += qextra_limbs; for (i = nsize - 2; i >= 0; i--) udiv_qrnnd(qp[i], n1, n1, np[i], d); qp -= qextra_limbs; for (i = qextra_limbs - 1; i >= 0; i--) udiv_qrnnd(qp[i], n1, n1, 0, d); np[0] = n1; } break; case 2: { mpi_size_t i; mpi_limb_t n1, n0, n2; mpi_limb_t d1, d0; np += nsize - 2; d1 = dp[1]; d0 = dp[0]; n1 = np[1]; n0 = np[0]; if (n1 >= d1 && (n1 > d1 || n0 >= d0)) { sub_ddmmss(n1, n0, n1, n0, d1, d0); most_significant_q_limb = 1; } for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) { mpi_limb_t q; mpi_limb_t r; if (i >= qextra_limbs) np--; else np[0] = 0; if (n1 == d1) { /* Q should be either 111..111 or 111..110. Need special * treatment of this rare case as normal division would * give overflow. */ q = ~(mpi_limb_t) 0; r = n0 + d1; if (r < d1) { /* Carry in the addition? */ add_ssaaaa(n1, n0, r - d0, np[0], 0, d0); qp[i] = q; continue; } n1 = d0 - (d0 != 0 ? 1 : 0); n0 = -d0; } else { udiv_qrnnd(q, r, n1, n0, d1); umul_ppmm(n1, n0, d0, q); } n2 = np[0]; q_test: if (n1 > r || (n1 == r && n0 > n2)) { /* The estimated Q was too large. */ q--; sub_ddmmss(n1, n0, n1, n0, 0, d0); r += d1; if (r >= d1) /* If not carry, test Q again. */ goto q_test; } qp[i] = q; sub_ddmmss(n1, n0, r, n2, n1, n0); } np[1] = n1; np[0] = n0; } break; default: { mpi_size_t i; mpi_limb_t dX, d1, n0; np += nsize - dsize; dX = dp[dsize - 1]; d1 = dp[dsize - 2]; n0 = np[dsize - 1]; if (n0 >= dX) { if (n0 > dX || mpihelp_cmp(np, dp, dsize - 1) >= 0) { mpihelp_sub_n(np, np, dp, dsize); n0 = np[dsize - 1]; most_significant_q_limb = 1; } } for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) { mpi_limb_t q; mpi_limb_t n1, n2; mpi_limb_t cy_limb; if (i >= qextra_limbs) { np--; n2 = np[dsize]; } else { n2 = np[dsize - 1]; MPN_COPY_DECR(np + 1, np, dsize - 1); np[0] = 0; } if (n0 == dX) { /* This might over-estimate q, but it's probably not worth * the extra code here to find out. */ q = ~(mpi_limb_t) 0; } else { mpi_limb_t r; udiv_qrnnd(q, r, n0, np[dsize - 1], dX); umul_ppmm(n1, n0, d1, q); while (n1 > r || (n1 == r && n0 > np[dsize - 2])) { q--; r += dX; if (r < dX) /* I.e. "carry in previous addition?" */ break; n1 -= n0 < d1; n0 -= d1; } } /* Possible optimization: We already have (q * n0) and (1 * n1) * after the calculation of q. Taking advantage of that, we * could make this loop make two iterations less. */ cy_limb = mpihelp_submul_1(np, dp, dsize, q); if (n2 != cy_limb) { mpihelp_add_n(np, np, dp, dsize); q--; } qp[i] = q; n0 = np[dsize - 1]; } } } return most_significant_q_limb; } /**************** * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. * Return the single-limb remainder. * There are no constraints on the value of the divisor. * * QUOT_PTR and DIVIDEND_PTR might point to the same limb. */ mpi_limb_t mpihelp_divmod_1(mpi_ptr_t quot_ptr, mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, mpi_limb_t divisor_limb) { mpi_size_t i; mpi_limb_t n1, n0, r; mpi_limb_t dummy __maybe_unused; if (!dividend_size) return 0; /* If multiplication is much faster than division, and the * dividend is large, pre-invert the divisor, and use * only multiplications in the inner loop. * * This test should be read: * Does it ever help to use udiv_qrnnd_preinv? * && Does what we save compensate for the inversion overhead? */ if (UDIV_TIME > (2 * UMUL_TIME + 6) && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { int normalization_steps; normalization_steps = count_leading_zeros(divisor_limb); if (normalization_steps) { mpi_limb_t divisor_limb_inverted; divisor_limb <<= normalization_steps; /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the * most significant bit (with weight 2**N) implicit. */ /* Special case for DIVISOR_LIMB == 100...000. */ if (!(divisor_limb << 1)) divisor_limb_inverted = ~(mpi_limb_t)0; else udiv_qrnnd(divisor_limb_inverted, dummy, -divisor_limb, 0, divisor_limb); n1 = dividend_ptr[dividend_size - 1]; r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); /* Possible optimization: * if (r == 0 * && divisor_limb > ((n1 << normalization_steps) * | (dividend_ptr[dividend_size - 2] >> ...))) * ...one division less... */ for (i = dividend_size - 2; i >= 0; i--) { n0 = dividend_ptr[i]; UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, ((n1 << normalization_steps) | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), divisor_limb, divisor_limb_inverted); n1 = n0; } UDIV_QRNND_PREINV(quot_ptr[0], r, r, n1 << normalization_steps, divisor_limb, divisor_limb_inverted); return r >> normalization_steps; } else { mpi_limb_t divisor_limb_inverted; /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the * most significant bit (with weight 2**N) implicit. */ /* Special case for DIVISOR_LIMB == 100...000. */ if (!(divisor_limb << 1)) divisor_limb_inverted = ~(mpi_limb_t) 0; else udiv_qrnnd(divisor_limb_inverted, dummy, -divisor_limb, 0, divisor_limb); i = dividend_size - 1; r = dividend_ptr[i]; if (r >= divisor_limb) r = 0; else quot_ptr[i--] = 0; for ( ; i >= 0; i--) { n0 = dividend_ptr[i]; UDIV_QRNND_PREINV(quot_ptr[i], r, r, n0, divisor_limb, divisor_limb_inverted); } return r; } } else { if (UDIV_NEEDS_NORMALIZATION) { int normalization_steps; normalization_steps = count_leading_zeros(divisor_limb); if (normalization_steps) { divisor_limb <<= normalization_steps; n1 = dividend_ptr[dividend_size - 1]; r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); /* Possible optimization: * if (r == 0 * && divisor_limb > ((n1 << normalization_steps) * | (dividend_ptr[dividend_size - 2] >> ...))) * ...one division less... */ for (i = dividend_size - 2; i >= 0; i--) { n0 = dividend_ptr[i]; udiv_qrnnd(quot_ptr[i + 1], r, r, ((n1 << normalization_steps) | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), divisor_limb); n1 = n0; } udiv_qrnnd(quot_ptr[0], r, r, n1 << normalization_steps, divisor_limb); return r >> normalization_steps; } } /* No normalization needed, either because udiv_qrnnd doesn't require * it, or because DIVISOR_LIMB is already normalized. */ i = dividend_size - 1; r = dividend_ptr[i]; if (r >= divisor_limb) r = 0; else quot_ptr[i--] = 0; for (; i >= 0; i--) { n0 = dividend_ptr[i]; udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); } return r; } } |