/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_v13_0.h"
#include "smu13_driver_if_yellow_carp.h"
#include "yellow_carp_ppt.h"
#include "smu_v13_0_1_ppsmc.h"
#include "smu_v13_0_1_pmfw.h"
#include "smu_cmn.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
#define regSMUIO_GFX_MISC_CNTL 0x00c5
#define regSMUIO_GFX_MISC_CNTL_BASE_IDX 0
#define SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS_MASK 0x00000006L
#define SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS__SHIFT 0x1L
#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE ( \
FEATURE_MASK(FEATURE_CCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_VCN_DPM_BIT) | \
FEATURE_MASK(FEATURE_FCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_SOCCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_MP0CLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_LCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_SHUBCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_DCFCLK_DPM_BIT)| \
FEATURE_MASK(FEATURE_GFX_DPM_BIT))
static struct cmn2asic_msg_mapping yellow_carp_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1),
MSG_MAP(EnableGfxOff, PPSMC_MSG_EnableGfxOff, 1),
MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 1),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 1),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 1),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 1),
MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn, 1),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 1),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 1),
MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset, 1),
MSG_MAP(GetEnabledSmuFeatures, PPSMC_MSG_GetEnabledSmuFeatures, 1),
MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq, 1),
MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn, 1),
MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency, 1),
MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency, 1),
MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk, 1),
MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk, 1),
MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq, 1),
MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq, 1),
MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn, 1),
MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage, 1),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 1),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 1),
MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq, 1),
MSG_MAP(SetSoftMinSocclkByFreq, PPSMC_MSG_SetSoftMinSocclkByFreq, 1),
};
static struct cmn2asic_mapping yellow_carp_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(CCLK_DPM),
FEA_MAP(FAN_CONTROLLER),
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(THERMAL),
FEA_MAP(ULV),
FEA_MAP(VCN_DPM),
FEA_MAP_REVERSE(FCLK),
FEA_MAP_REVERSE(SOCCLK),
FEA_MAP(LCLK_DPM),
FEA_MAP(SHUBCLK_DPM),
FEA_MAP(DCFCLK_DPM),
FEA_MAP_HALF_REVERSE(GFX),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_DCFCLK),
FEA_MAP(DS_FCLK),
FEA_MAP(DS_MP1CLK),
FEA_MAP(DS_MP0CLK),
FEA_MAP(GFX_DEM),
FEA_MAP(PSI),
FEA_MAP(PROCHOT),
FEA_MAP(CPUOFF),
FEA_MAP(STAPM),
FEA_MAP(S0I3),
FEA_MAP(PERF_LIMIT),
FEA_MAP(CORE_DLDO),
FEA_MAP(RSMU_LOW_POWER),
FEA_MAP(SMN_LOW_POWER),
FEA_MAP(THM_LOW_POWER),
FEA_MAP(SMUIO_LOW_POWER),
FEA_MAP(MP1_LOW_POWER),
FEA_MAP(DS_VCN),
FEA_MAP(CPPC),
FEA_MAP(DF_CSTATES),
FEA_MAP(MSMU_LOW_POWER),
FEA_MAP(ATHUB_PG),
};
static struct cmn2asic_mapping yellow_carp_table_map[SMU_TABLE_COUNT] = {
TAB_MAP_VALID(WATERMARKS),
TAB_MAP_VALID(SMU_METRICS),
TAB_MAP_VALID(CUSTOM_DPM),
TAB_MAP_VALID(DPMCLOCKS),
};
static int yellow_carp_init_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
if (!smu_table->clocks_table)
goto err0_out;
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
goto err1_out;
smu_table->metrics_time = 0;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
goto err2_out;
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_1);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table)
goto err3_out;
return 0;
err3_out:
kfree(smu_table->watermarks_table);
err2_out:
kfree(smu_table->metrics_table);
err1_out:
kfree(smu_table->clocks_table);
err0_out:
return -ENOMEM;
}
static int yellow_carp_fini_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
kfree(smu_table->clocks_table);
smu_table->clocks_table = NULL;
kfree(smu_table->metrics_table);
smu_table->metrics_table = NULL;
kfree(smu_table->watermarks_table);
smu_table->watermarks_table = NULL;
kfree(smu_table->gpu_metrics_table);
smu_table->gpu_metrics_table = NULL;
return 0;
}
static int yellow_carp_system_features_control(struct smu_context *smu, bool en)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (!en && !adev->in_s0ix)
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL);
return ret;
}
static int yellow_carp_dpm_set_vcn_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
/* vcn dpm on is a prerequisite for vcn power gate messages */
if (enable)
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn,
0, NULL);
else
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn,
0, NULL);
return ret;
}
static int yellow_carp_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable)
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg,
0, NULL);
else
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_PowerDownJpeg, 0,
NULL);
return ret;
}
static bool yellow_carp_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint64_t feature_enabled;
ret = smu_cmn_get_enabled_mask(smu, &feature_enabled);
if (ret)
return false;
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int yellow_carp_post_smu_init(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
/* allow message will be sent after enable message on Yellow Carp*/
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_EnableGfxOff, NULL);
if (ret)
dev_err(adev->dev, "Failed to Enable GfxOff!\n");
return ret;
}
static int yellow_carp_mode_reset(struct smu_context *smu, int type)
{
int ret = 0;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GfxDeviceDriverReset, type, NULL);
if (ret)
dev_err(smu->adev->dev, "Failed to mode reset!\n");
return ret;
}
static int yellow_carp_mode2_reset(struct smu_context *smu)
{
return yellow_carp_mode_reset(smu, SMU_RESET_MODE_2);
}
static void yellow_carp_get_ss_power_percent(SmuMetrics_t *metrics,
uint32_t *apu_percent, uint32_t *dgpu_percent)
{
uint32_t apu_boost = 0;
uint32_t dgpu_boost = 0;
uint16_t apu_limit = 0;
uint16_t dgpu_limit = 0;
uint16_t apu_power = 0;
uint16_t dgpu_power = 0;
/* APU and dGPU power values are reported in milli Watts
* and STAPM power limits are in Watts */
apu_power = metrics->ApuPower/1000;
apu_limit = metrics->StapmOpnLimit;
if (apu_power > apu_limit && apu_limit != 0)
apu_boost = ((apu_power - apu_limit) * 100) / apu_limit;
apu_boost = (apu_boost > 100) ? 100 : apu_boost;
dgpu_power = metrics->dGpuPower/1000;
if (metrics->StapmCurrentLimit > metrics->StapmOpnLimit)
dgpu_limit = metrics->StapmCurrentLimit - metrics->StapmOpnLimit;
if (dgpu_power > dgpu_limit && dgpu_limit != 0)
dgpu_boost = ((dgpu_power - dgpu_limit) * 100) / dgpu_limit;
dgpu_boost = (dgpu_boost > 100) ? 100 : dgpu_boost;
if (dgpu_boost >= apu_boost)
apu_boost = 0;
else
dgpu_boost = 0;
*apu_percent = apu_boost;
*dgpu_percent = dgpu_boost;
}
static int yellow_carp_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table = &smu->smu_table;
SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
int ret = 0;
uint32_t apu_percent = 0;
uint32_t dgpu_percent = 0;
ret = smu_cmn_get_metrics_table(smu, NULL, false);
if (ret)
return ret;
switch (member) {
case METRICS_AVERAGE_GFXCLK:
*value = metrics->GfxclkFrequency;
break;
case METRICS_AVERAGE_SOCCLK:
*value = metrics->SocclkFrequency;
break;
case METRICS_AVERAGE_VCLK:
*value = metrics->VclkFrequency;
break;
case METRICS_AVERAGE_DCLK:
*value = metrics->DclkFrequency;
break;
case METRICS_AVERAGE_UCLK:
*value = metrics->MemclkFrequency;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->GfxActivity / 100;
break;
case METRICS_AVERAGE_VCNACTIVITY:
*value = metrics->UvdActivity;
break;
case METRICS_AVERAGE_SOCKETPOWER:
*value = (metrics->CurrentSocketPower << 8) / 1000;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->GfxTemperature / 100 *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->SocTemperature / 100 *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->ThrottlerStatus;
break;
case METRICS_VOLTAGE_VDDGFX:
*value = metrics->Voltage[0];
break;
case METRICS_VOLTAGE_VDDSOC:
*value = metrics->Voltage[1];
break;
case METRICS_SS_APU_SHARE:
/* return the percentage of APU power boost
* with respect to APU's power limit.
*/
yellow_carp_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent);
*value = apu_percent;
break;
case METRICS_SS_DGPU_SHARE:
/* return the percentage of dGPU power boost
* with respect to dGPU's power limit.
*/
yellow_carp_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent);
*value = dgpu_percent;
break;
default:
*value = UINT_MAX;
break;
}
return ret;
}
static int yellow_carp_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if (!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_AVERAGE_SOCKETPOWER,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_AVERAGE_UCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_VOLTAGE_VDDGFX,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDNB:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_VOLTAGE_VDDSOC,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_SS_APU_SHARE:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_SS_APU_SHARE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_SS_DGPU_SHARE:
ret = yellow_carp_get_smu_metrics_data(smu,
METRICS_SS_DGPU_SHARE,
(uint32_t *)data);
*size = 4;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int yellow_carp_set_watermarks_table(struct smu_context *smu,
struct pp_smu_wm_range_sets *clock_ranges)
{
int i;
int ret = 0;
Watermarks_t *table = smu->smu_table.watermarks_table;
if (!table || !clock_ranges)
return -EINVAL;
if (clock_ranges) {
if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES ||
clock_ranges->num_writer_wm_sets > NUM_WM_RANGES)
return -EINVAL;
for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) {
table->WatermarkRow[WM_DCFCLK][i].MinClock =
clock_ranges->reader_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MaxClock =
clock_ranges->reader_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MinMclk =
clock_ranges->reader_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
clock_ranges->reader_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].WmSetting =
clock_ranges->reader_wm_sets[i].wm_inst;
}
for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
clock_ranges->writer_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
clock_ranges->writer_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MinMclk =
clock_ranges->writer_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
clock_ranges->writer_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].WmSetting =
clock_ranges->writer_wm_sets[i].wm_inst;
}
smu->watermarks_bitmap |= WATERMARKS_EXIST;
}
/* pass data to smu controller */
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_cmn_write_watermarks_table(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to update WMTABLE!");
return ret;
}
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
return 0;
}
static ssize_t yellow_carp_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v2_1 *gpu_metrics =
(struct gpu_metrics_v2_1 *)smu_table->gpu_metrics_table;
SmuMetrics_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu, &metrics, true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 1);
gpu_metrics->temperature_gfx = metrics.GfxTemperature;
gpu_metrics->temperature_soc = metrics.SocTemperature;
memcpy(&gpu_metrics->temperature_core[0],
&metrics.CoreTemperature[0],
sizeof(uint16_t) * 8);
gpu_metrics->temperature_l3[0] = metrics.L3Temperature;
gpu_metrics->average_gfx_activity = metrics.GfxActivity;
gpu_metrics->average_mm_activity = metrics.UvdActivity;
gpu_metrics->average_socket_power = metrics.CurrentSocketPower;
gpu_metrics->average_gfx_power = metrics.Power[0];
gpu_metrics->average_soc_power = metrics.Power[1];
memcpy(&gpu_metrics->average_core_power[0],
&metrics.CorePower[0],
sizeof(uint16_t) * 8);
gpu_metrics->average_gfxclk_frequency = metrics.GfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.SocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.MemclkFrequency;
gpu_metrics->average_fclk_frequency = metrics.MemclkFrequency;
gpu_metrics->average_vclk_frequency = metrics.VclkFrequency;
gpu_metrics->average_dclk_frequency = metrics.DclkFrequency;
memcpy(&gpu_metrics->current_coreclk[0],
&metrics.CoreFrequency[0],
sizeof(uint16_t) * 8);
gpu_metrics->current_l3clk[0] = metrics.L3Frequency;
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v2_1);
}
/**
* yellow_carp_get_gfxoff_status - get gfxoff status
*
* @smu: smu_context pointer
*
* This function will be used to get gfxoff status
*
* Returns 0=GFXOFF(default).
* Returns 1=Transition out of GFX State.
* Returns 2=Not in GFXOFF.
* Returns 3=Transition into GFXOFF.
*/
static uint32_t yellow_carp_get_gfxoff_status(struct smu_context *smu)
{
uint32_t reg;
uint32_t gfxoff_status = 0;
struct amdgpu_device *adev = smu->adev;
reg = RREG32_SOC15(SMUIO, 0, regSMUIO_GFX_MISC_CNTL);
gfxoff_status = (reg & SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS_MASK)
>> SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS__SHIFT;
return gfxoff_status;
}
static int yellow_carp_set_default_dpm_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
return smu_cmn_update_table(smu, SMU_TABLE_DPMCLOCKS, 0, smu_table->clocks_table, false);
}
static int yellow_carp_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type,
long input[], uint32_t size)
{
struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
int ret = 0;
/* Only allowed in manual mode */
if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
return -EINVAL;
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (size != 2) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
if (input[0] == 0) {
if (input[1] < smu->gfx_default_hard_min_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n",
input[1], smu->gfx_default_hard_min_freq);
return -EINVAL;
}
smu->gfx_actual_hard_min_freq = input[1];
} else if (input[0] == 1) {
if (input[1] > smu->gfx_default_soft_max_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n",
input[1], smu->gfx_default_soft_max_freq);
return -EINVAL;
}
smu->gfx_actual_soft_max_freq = input[1];
} else {
return -EINVAL;
}
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
} else {
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
}
break;
case PP_OD_COMMIT_DPM_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
} else {
if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) {
dev_err(smu->adev->dev,
"The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n",
smu->gfx_actual_hard_min_freq,
smu->gfx_actual_soft_max_freq);
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
smu->gfx_actual_hard_min_freq, NULL);
if (ret) {
dev_err(smu->adev->dev, "Set hard min sclk failed!");
return ret;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
smu->gfx_actual_soft_max_freq, NULL);
if (ret) {
dev_err(smu->adev->dev, "Set soft max sclk failed!");
return ret;
}
}
break;
default:
return -ENOSYS;
}
return ret;
}
static int yellow_carp_get_current_clk_freq(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
MetricsMember_t member_type;
switch (clk_type) {
case SMU_SOCCLK:
member_type = METRICS_AVERAGE_SOCCLK;
break;
case SMU_VCLK:
member_type = METRICS_AVERAGE_VCLK;
break;
case SMU_DCLK:
member_type = METRICS_AVERAGE_DCLK;
break;
case SMU_MCLK:
member_type = METRICS_AVERAGE_UCLK;
break;
case SMU_FCLK:
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetFclkFrequency, 0, value);
case SMU_GFXCLK:
case SMU_SCLK:
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetGfxclkFrequency, 0, value);
break;
default:
return -EINVAL;
}
return yellow_carp_get_smu_metrics_data(smu, member_type, value);
}
static int yellow_carp_get_dpm_level_count(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *count)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
switch (clk_type) {
case SMU_SOCCLK:
*count = clk_table->NumSocClkLevelsEnabled;
break;
case SMU_VCLK:
*count = clk_table->VcnClkLevelsEnabled;
break;
case SMU_DCLK:
*count = clk_table->VcnClkLevelsEnabled;
break;
case SMU_MCLK:
*count = clk_table->NumDfPstatesEnabled;
break;
case SMU_FCLK:
*count = clk_table->NumDfPstatesEnabled;
break;
default:
break;
}
return 0;
}
static int yellow_carp_get_dpm_freq_by_index(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t dpm_level,
uint32_t *freq)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
if (!clk_table || clk_type >= SMU_CLK_COUNT)
return -EINVAL;
switch (clk_type) {
case SMU_SOCCLK:
if (dpm_level >= clk_table->NumSocClkLevelsEnabled)
return -EINVAL;
*freq = clk_table->SocClocks[dpm_level];
break;
case SMU_VCLK:
if (dpm_level >= clk_table->VcnClkLevelsEnabled)
return -EINVAL;
*freq = clk_table->VClocks[dpm_level];
break;
case SMU_DCLK:
if (dpm_level >= clk_table->VcnClkLevelsEnabled)
return -EINVAL;
*freq = clk_table->DClocks[dpm_level];
break;
case SMU_UCLK:
case SMU_MCLK:
if (dpm_level >= clk_table->NumDfPstatesEnabled)
return -EINVAL;
*freq = clk_table->DfPstateTable[dpm_level].MemClk;
break;
case SMU_FCLK:
if (dpm_level >= clk_table->NumDfPstatesEnabled)
return -EINVAL;
*freq = clk_table->DfPstateTable[dpm_level].FClk;
break;
default:
return -EINVAL;
}
return 0;
}
static bool yellow_carp_clk_dpm_is_enabled(struct smu_context *smu,
enum smu_clk_type clk_type)
{
enum smu_feature_mask feature_id = 0;
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
case SMU_FCLK:
feature_id = SMU_FEATURE_DPM_FCLK_BIT;
break;
case SMU_GFXCLK:
case SMU_SCLK:
feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
break;
case SMU_SOCCLK:
feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
break;
case SMU_VCLK:
case SMU_DCLK:
feature_id = SMU_FEATURE_VCN_DPM_BIT;
break;
default:
return true;
}
return smu_cmn_feature_is_enabled(smu, feature_id);
}
static int yellow_carp_get_dpm_ultimate_freq(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *min,
uint32_t *max)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
uint32_t clock_limit;
uint32_t max_dpm_level, min_dpm_level;
int ret = 0;
if (!yellow_carp_clk_dpm_is_enabled(smu, clk_type)) {
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
clock_limit = smu->smu_table.boot_values.uclk;
break;
case SMU_FCLK:
clock_limit = smu->smu_table.boot_values.fclk;
break;
case SMU_GFXCLK:
case SMU_SCLK:
clock_limit = smu->smu_table.boot_values.gfxclk;
break;
case SMU_SOCCLK:
clock_limit = smu->smu_table.boot_values.socclk;
break;
case SMU_VCLK:
clock_limit = smu->smu_table.boot_values.vclk;
break;
case SMU_DCLK:
clock_limit = smu->smu_table.boot_values.dclk;
break;
default:
clock_limit = 0;
break;
}
/* clock in Mhz unit */
if (min)
*min = clock_limit / 100;
if (max)
*max = clock_limit / 100;
return 0;
}
if (max) {
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
*max = clk_table->MaxGfxClk;
break;
case SMU_MCLK:
case SMU_UCLK:
case SMU_FCLK:
max_dpm_level = 0;
break;
case SMU_SOCCLK:
max_dpm_level = clk_table->NumSocClkLevelsEnabled - 1;
break;
case SMU_VCLK:
case SMU_DCLK:
max_dpm_level = clk_table->VcnClkLevelsEnabled - 1;
break;
default:
ret = -EINVAL;
goto failed;
}
if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK) {
ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, max_dpm_level, max);
if (ret)
goto failed;
}
}
if (min) {
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
*min = clk_table->MinGfxClk;
break;
case SMU_MCLK:
case SMU_UCLK:
case SMU_FCLK:
min_dpm_level = clk_table->NumDfPstatesEnabled - 1;
break;
case SMU_SOCCLK:
min_dpm_level = 0;
break;
case SMU_VCLK:
case SMU_DCLK:
min_dpm_level = 0;
break;
default:
ret = -EINVAL;
goto failed;
}
if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK) {
ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, min_dpm_level, min);
if (ret)
goto failed;
}
}
failed:
return ret;
}
static int yellow_carp_set_soft_freq_limited_range(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t min,
uint32_t max)
{
enum smu_message_type msg_set_min, msg_set_max;
int ret = 0;
if (!yellow_carp_clk_dpm_is_enabled(smu, clk_type))
return -EINVAL;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
msg_set_min = SMU_MSG_SetHardMinGfxClk;
msg_set_max = SMU_MSG_SetSoftMaxGfxClk;
break;
case SMU_FCLK:
msg_set_min = SMU_MSG_SetHardMinFclkByFreq;
msg_set_max = SMU_MSG_SetSoftMaxFclkByFreq;
break;
case SMU_SOCCLK:
msg_set_min = SMU_MSG_SetHardMinSocclkByFreq;
msg_set_max = SMU_MSG_SetSoftMaxSocclkByFreq;
break;
case SMU_VCLK:
case SMU_DCLK:
msg_set_min = SMU_MSG_SetHardMinVcn;
msg_set_max = SMU_MSG_SetSoftMaxVcn;
break;
default:
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu, msg_set_min, min, NULL);
if (ret)
goto out;
ret = smu_cmn_send_smc_msg_with_param(smu, msg_set_max, max, NULL);
if (ret)
goto out;
out:
return ret;
}
static int yellow_carp_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
int i, idx, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0;
uint32_t min, max;
smu_cmn_get_sysfs_buf(&buf, &size);
switch (clk_type) {
case SMU_OD_SCLK:
size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK");
size += sysfs_emit_at(buf, size, "0: %10uMhz\n",
(smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq);
size += sysfs_emit_at(buf, size, "1: %10uMhz\n",
(smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq);
break;
case SMU_OD_RANGE:
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n",
smu->gfx_default_hard_min_freq, smu->gfx_default_soft_max_freq);
break;
case SMU_SOCCLK:
case SMU_VCLK:
case SMU_DCLK:
case SMU_MCLK:
case SMU_FCLK:
ret = yellow_carp_get_current_clk_freq(smu, clk_type, &cur_value);
if (ret)
goto print_clk_out;
ret = yellow_carp_get_dpm_level_count(smu, clk_type, &count);
if (ret)
goto print_clk_out;
for (i = 0; i < count; i++) {
idx = (clk_type == SMU_FCLK || clk_type == SMU_MCLK) ? (count - i - 1) : i;
ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, idx, &value);
if (ret)
goto print_clk_out;
size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
}
break;
case SMU_GFXCLK:
case SMU_SCLK:
ret = yellow_carp_get_current_clk_freq(smu, clk_type, &cur_value);
if (ret)
goto print_clk_out;
min = (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq;
max = (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq;
if (cur_value == max)
i = 2;
else if (cur_value == min)
i = 0;
else
i = 1;
size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", min,
i == 0 ? "*" : "");
size += sysfs_emit_at(buf, size, "1: %uMhz %s\n",
i == 1 ? cur_value : YELLOW_CARP_UMD_PSTATE_GFXCLK,
i == 1 ? "*" : "");
size += sysfs_emit_at(buf, size, "2: %uMhz %s\n", max,
i == 2 ? "*" : "");
break;
default:
break;
}
print_clk_out:
return size;
}
static int yellow_carp_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
uint32_t soft_min_level = 0, soft_max_level = 0;
uint32_t min_freq = 0, max_freq = 0;
int ret = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_SOCCLK:
case SMU_FCLK:
case SMU_VCLK:
case SMU_DCLK:
ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq);
if (ret)
goto force_level_out;
ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq);
if (ret)
goto force_level_out;
ret = yellow_carp_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq);
if (ret)
goto force_level_out;
break;
default:
ret = -EINVAL;
break;
}
force_level_out:
return ret;
}
static int yellow_carp_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
struct amdgpu_device *adev = smu->adev;
uint32_t sclk_min = 0, sclk_max = 0;
uint32_t fclk_min = 0, fclk_max = 0;
uint32_t socclk_min = 0, socclk_max = 0;
int ret = 0;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
yellow_carp_get_dpm_ultimate_freq(smu, SMU_SCLK, NULL, &sclk_max);
yellow_carp_get_dpm_ultimate_freq(smu, SMU_FCLK, NULL, &fclk_max);
yellow_carp_get_dpm_ultimate_freq(smu, SMU_SOCCLK, NULL, &socclk_max);
sclk_min = sclk_max;
fclk_min = fclk_max;
socclk_min = socclk_max;
break;
case AMD_DPM_FORCED_LEVEL_LOW:
yellow_carp_get_dpm_ultimate_freq(smu, SMU_SCLK, &sclk_min, NULL);
yellow_carp_get_dpm_ultimate_freq(smu, SMU_FCLK, &fclk_min, NULL);
yellow_carp_get_dpm_ultimate_freq(smu, SMU_SOCCLK, &socclk_min, NULL);
sclk_max = sclk_min;
fclk_max = fclk_min;
socclk_max = socclk_min;
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
yellow_carp_get_dpm_ultimate_freq(smu, SMU_SCLK, &sclk_min, &sclk_max);
yellow_carp_get_dpm_ultimate_freq(smu, SMU_FCLK, &fclk_min, &fclk_max);
yellow_carp_get_dpm_ultimate_freq(smu, SMU_SOCCLK, &socclk_min, &socclk_max);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
/* Temporarily do nothing since the optimal clocks haven't been provided yet */
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
return 0;
default:
dev_err(adev->dev, "Invalid performance level %d\n", level);
return -EINVAL;
}
if (sclk_min && sclk_max) {
ret = yellow_carp_set_soft_freq_limited_range(smu,
SMU_SCLK,
sclk_min,
sclk_max);
if (ret)
return ret;
smu->gfx_actual_hard_min_freq = sclk_min;
smu->gfx_actual_soft_max_freq = sclk_max;
}
if (fclk_min && fclk_max) {
ret = yellow_carp_set_soft_freq_limited_range(smu,
SMU_FCLK,
fclk_min,
fclk_max);
if (ret)
return ret;
}
if (socclk_min && socclk_max) {
ret = yellow_carp_set_soft_freq_limited_range(smu,
SMU_SOCCLK,
socclk_min,
socclk_max);
if (ret)
return ret;
}
return ret;
}
static int yellow_carp_set_fine_grain_gfx_freq_parameters(struct smu_context *smu)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
smu->gfx_default_hard_min_freq = clk_table->MinGfxClk;
smu->gfx_default_soft_max_freq = clk_table->MaxGfxClk;
smu->gfx_actual_hard_min_freq = 0;
smu->gfx_actual_soft_max_freq = 0;
return 0;
}
static const struct pptable_funcs yellow_carp_ppt_funcs = {
.check_fw_status = smu_v13_0_check_fw_status,
.check_fw_version = smu_v13_0_check_fw_version,
.init_smc_tables = yellow_carp_init_smc_tables,
.fini_smc_tables = yellow_carp_fini_smc_tables,
.get_vbios_bootup_values = smu_v13_0_get_vbios_bootup_values,
.system_features_control = yellow_carp_system_features_control,
.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
.send_smc_msg = smu_cmn_send_smc_msg,
.dpm_set_vcn_enable = yellow_carp_dpm_set_vcn_enable,
.dpm_set_jpeg_enable = yellow_carp_dpm_set_jpeg_enable,
.set_default_dpm_table = yellow_carp_set_default_dpm_tables,
.read_sensor = yellow_carp_read_sensor,
.is_dpm_running = yellow_carp_is_dpm_running,
.set_watermarks_table = yellow_carp_set_watermarks_table,
.get_gpu_metrics = yellow_carp_get_gpu_metrics,
.get_enabled_mask = smu_cmn_get_enabled_mask,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_driver_table_location = smu_v13_0_set_driver_table_location,
.gfx_off_control = smu_v13_0_gfx_off_control,
.get_gfx_off_status = yellow_carp_get_gfxoff_status,
.post_init = yellow_carp_post_smu_init,
.mode2_reset = yellow_carp_mode2_reset,
.get_dpm_ultimate_freq = yellow_carp_get_dpm_ultimate_freq,
.od_edit_dpm_table = yellow_carp_od_edit_dpm_table,
.print_clk_levels = yellow_carp_print_clk_levels,
.force_clk_levels = yellow_carp_force_clk_levels,
.set_performance_level = yellow_carp_set_performance_level,
.set_fine_grain_gfx_freq_parameters = yellow_carp_set_fine_grain_gfx_freq_parameters,
};
void yellow_carp_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &yellow_carp_ppt_funcs;
smu->message_map = yellow_carp_message_map;
smu->feature_map = yellow_carp_feature_mask_map;
smu->table_map = yellow_carp_table_map;
smu->is_apu = true;
smu_v13_0_set_smu_mailbox_registers(smu);
}