Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | // SPDX-License-Identifier: GPL-2.0+ // ir-rcmm-decoder.c - A decoder for the RCMM IR protocol // // Copyright (C) 2018 by Patrick Lerda <patrick9876@free.fr> #include "rc-core-priv.h" #include <linux/module.h> #define RCMM_UNIT 166 /* microseconds */ #define RCMM_PREFIX_PULSE 417 /* 166.666666666666*2.5 */ #define RCMM_PULSE_0 278 /* 166.666666666666*(1+2/3) */ #define RCMM_PULSE_1 444 /* 166.666666666666*(2+2/3) */ #define RCMM_PULSE_2 611 /* 166.666666666666*(3+2/3) */ #define RCMM_PULSE_3 778 /* 166.666666666666*(4+2/3) */ enum rcmm_state { STATE_INACTIVE, STATE_LOW, STATE_BUMP, STATE_VALUE, STATE_FINISHED, }; static bool rcmm_mode(const struct rcmm_dec *data) { return !((0x000c0000 & data->bits) == 0x000c0000); } static int rcmm_miscmode(struct rc_dev *dev, struct rcmm_dec *data) { switch (data->count) { case 24: if (dev->enabled_protocols & RC_PROTO_BIT_RCMM24) { rc_keydown(dev, RC_PROTO_RCMM24, data->bits, 0); data->state = STATE_INACTIVE; return 0; } return -1; case 12: if (dev->enabled_protocols & RC_PROTO_BIT_RCMM12) { rc_keydown(dev, RC_PROTO_RCMM12, data->bits, 0); data->state = STATE_INACTIVE; return 0; } return -1; } return -1; } /** * ir_rcmm_decode() - Decode one RCMM pulse or space * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_rcmm_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct rcmm_dec *data = &dev->raw->rcmm; u32 scancode; u8 toggle; int value; if (!(dev->enabled_protocols & (RC_PROTO_BIT_RCMM32 | RC_PROTO_BIT_RCMM24 | RC_PROTO_BIT_RCMM12))) return 0; if (!is_timing_event(ev)) { if (ev.overflow) data->state = STATE_INACTIVE; return 0; } switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (!eq_margin(ev.duration, RCMM_PREFIX_PULSE, RCMM_UNIT)) break; data->state = STATE_LOW; data->count = 0; data->bits = 0; return 0; case STATE_LOW: if (ev.pulse) break; if (!eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT)) break; data->state = STATE_BUMP; return 0; case STATE_BUMP: if (!ev.pulse) break; if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2)) break; data->state = STATE_VALUE; return 0; case STATE_VALUE: if (ev.pulse) break; if (eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT / 2)) value = 0; else if (eq_margin(ev.duration, RCMM_PULSE_1, RCMM_UNIT / 2)) value = 1; else if (eq_margin(ev.duration, RCMM_PULSE_2, RCMM_UNIT / 2)) value = 2; else if (eq_margin(ev.duration, RCMM_PULSE_3, RCMM_UNIT / 2)) value = 3; else value = -1; if (value == -1) { if (!rcmm_miscmode(dev, data)) return 0; break; } data->bits <<= 2; data->bits |= value; data->count += 2; if (data->count < 32) data->state = STATE_BUMP; else data->state = STATE_FINISHED; return 0; case STATE_FINISHED: if (!ev.pulse) break; if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2)) break; if (rcmm_mode(data)) { toggle = !!(0x8000 & data->bits); scancode = data->bits & ~0x8000; } else { toggle = 0; scancode = data->bits; } if (dev->enabled_protocols & RC_PROTO_BIT_RCMM32) { rc_keydown(dev, RC_PROTO_RCMM32, scancode, toggle); data->state = STATE_INACTIVE; return 0; } break; } dev_dbg(&dev->dev, "RC-MM decode failed at count %d state %d (%uus %s)\n", data->count, data->state, ev.duration, TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; } static const int rcmmspace[] = { RCMM_PULSE_0, RCMM_PULSE_1, RCMM_PULSE_2, RCMM_PULSE_3, }; static int ir_rcmm_rawencoder(struct ir_raw_event **ev, unsigned int max, unsigned int n, u32 data) { int i; int ret; ret = ir_raw_gen_pulse_space(ev, &max, RCMM_PREFIX_PULSE, RCMM_PULSE_0); if (ret) return ret; for (i = n - 2; i >= 0; i -= 2) { const unsigned int space = rcmmspace[(data >> i) & 3]; ret = ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, space); if (ret) return ret; } return ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, RCMM_PULSE_3 * 2); } static int ir_rcmm_encode(enum rc_proto protocol, u32 scancode, struct ir_raw_event *events, unsigned int max) { struct ir_raw_event *e = events; int ret; switch (protocol) { case RC_PROTO_RCMM32: ret = ir_rcmm_rawencoder(&e, max, 32, scancode); break; case RC_PROTO_RCMM24: ret = ir_rcmm_rawencoder(&e, max, 24, scancode); break; case RC_PROTO_RCMM12: ret = ir_rcmm_rawencoder(&e, max, 12, scancode); break; default: ret = -EINVAL; } if (ret < 0) return ret; return e - events; } static struct ir_raw_handler rcmm_handler = { .protocols = RC_PROTO_BIT_RCMM32 | RC_PROTO_BIT_RCMM24 | RC_PROTO_BIT_RCMM12, .decode = ir_rcmm_decode, .encode = ir_rcmm_encode, .carrier = 36000, .min_timeout = RCMM_PULSE_3 + RCMM_UNIT, }; static int __init ir_rcmm_decode_init(void) { ir_raw_handler_register(&rcmm_handler); pr_info("IR RCMM protocol handler initialized\n"); return 0; } static void __exit ir_rcmm_decode_exit(void) { ir_raw_handler_unregister(&rcmm_handler); } module_init(ir_rcmm_decode_init); module_exit(ir_rcmm_decode_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick Lerda"); MODULE_DESCRIPTION("RCMM IR protocol decoder"); |