Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | // SPDX-License-Identifier: GPL-2.0-only #include <perf/cpumap.h> #include <stdlib.h> #include <linux/refcount.h> #include <internal/cpumap.h> #include <asm/bug.h> #include <stdio.h> #include <string.h> #include <unistd.h> #include <ctype.h> #include <limits.h> void perf_cpu_map__set_nr(struct perf_cpu_map *map, int nr_cpus) { RC_CHK_ACCESS(map)->nr = nr_cpus; } struct perf_cpu_map *perf_cpu_map__alloc(int nr_cpus) { RC_STRUCT(perf_cpu_map) *cpus = malloc(sizeof(*cpus) + sizeof(struct perf_cpu) * nr_cpus); struct perf_cpu_map *result; if (ADD_RC_CHK(result, cpus)) { cpus->nr = nr_cpus; refcount_set(&cpus->refcnt, 1); } return result; } struct perf_cpu_map *perf_cpu_map__dummy_new(void) { struct perf_cpu_map *cpus = perf_cpu_map__alloc(1); if (cpus) RC_CHK_ACCESS(cpus)->map[0].cpu = -1; return cpus; } static void cpu_map__delete(struct perf_cpu_map *map) { if (map) { WARN_ONCE(refcount_read(perf_cpu_map__refcnt(map)) != 0, "cpu_map refcnt unbalanced\n"); RC_CHK_FREE(map); } } struct perf_cpu_map *perf_cpu_map__get(struct perf_cpu_map *map) { struct perf_cpu_map *result; if (RC_CHK_GET(result, map)) refcount_inc(perf_cpu_map__refcnt(map)); return result; } void perf_cpu_map__put(struct perf_cpu_map *map) { if (map) { if (refcount_dec_and_test(perf_cpu_map__refcnt(map))) cpu_map__delete(map); else RC_CHK_PUT(map); } } static struct perf_cpu_map *cpu_map__default_new(void) { struct perf_cpu_map *cpus; int nr_cpus; nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (nr_cpus < 0) return NULL; cpus = perf_cpu_map__alloc(nr_cpus); if (cpus != NULL) { int i; for (i = 0; i < nr_cpus; ++i) RC_CHK_ACCESS(cpus)->map[i].cpu = i; } return cpus; } struct perf_cpu_map *perf_cpu_map__default_new(void) { return cpu_map__default_new(); } static int cmp_cpu(const void *a, const void *b) { const struct perf_cpu *cpu_a = a, *cpu_b = b; return cpu_a->cpu - cpu_b->cpu; } static struct perf_cpu_map *cpu_map__trim_new(int nr_cpus, const struct perf_cpu *tmp_cpus) { size_t payload_size = nr_cpus * sizeof(struct perf_cpu); struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr_cpus); int i, j; if (cpus != NULL) { memcpy(RC_CHK_ACCESS(cpus)->map, tmp_cpus, payload_size); qsort(RC_CHK_ACCESS(cpus)->map, nr_cpus, sizeof(struct perf_cpu), cmp_cpu); /* Remove dups */ j = 0; for (i = 0; i < nr_cpus; i++) { if (i == 0 || RC_CHK_ACCESS(cpus)->map[i].cpu != RC_CHK_ACCESS(cpus)->map[i - 1].cpu) RC_CHK_ACCESS(cpus)->map[j++].cpu = RC_CHK_ACCESS(cpus)->map[i].cpu; } perf_cpu_map__set_nr(cpus, j); assert(j <= nr_cpus); } return cpus; } struct perf_cpu_map *perf_cpu_map__read(FILE *file) { struct perf_cpu_map *cpus = NULL; int nr_cpus = 0; struct perf_cpu *tmp_cpus = NULL, *tmp; int max_entries = 0; int n, cpu, prev; char sep; sep = 0; prev = -1; for (;;) { n = fscanf(file, "%u%c", &cpu, &sep); if (n <= 0) break; if (prev >= 0) { int new_max = nr_cpus + cpu - prev - 1; WARN_ONCE(new_max >= MAX_NR_CPUS, "Perf can support %d CPUs. " "Consider raising MAX_NR_CPUS\n", MAX_NR_CPUS); if (new_max >= max_entries) { max_entries = new_max + MAX_NR_CPUS / 2; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } while (++prev < cpu) tmp_cpus[nr_cpus++].cpu = prev; } if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } tmp_cpus[nr_cpus++].cpu = cpu; if (n == 2 && sep == '-') prev = cpu; else prev = -1; if (n == 1 || sep == '\n') break; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); else cpus = cpu_map__default_new(); out_free_tmp: free(tmp_cpus); return cpus; } static struct perf_cpu_map *cpu_map__read_all_cpu_map(void) { struct perf_cpu_map *cpus = NULL; FILE *onlnf; onlnf = fopen("/sys/devices/system/cpu/online", "r"); if (!onlnf) return cpu_map__default_new(); cpus = perf_cpu_map__read(onlnf); fclose(onlnf); return cpus; } struct perf_cpu_map *perf_cpu_map__new(const char *cpu_list) { struct perf_cpu_map *cpus = NULL; unsigned long start_cpu, end_cpu = 0; char *p = NULL; int i, nr_cpus = 0; struct perf_cpu *tmp_cpus = NULL, *tmp; int max_entries = 0; if (!cpu_list) return cpu_map__read_all_cpu_map(); /* * must handle the case of empty cpumap to cover * TOPOLOGY header for NUMA nodes with no CPU * ( e.g., because of CPU hotplug) */ if (!isdigit(*cpu_list) && *cpu_list != '\0') goto out; while (isdigit(*cpu_list)) { p = NULL; start_cpu = strtoul(cpu_list, &p, 0); if (start_cpu >= INT_MAX || (*p != '\0' && *p != ',' && *p != '-')) goto invalid; if (*p == '-') { cpu_list = ++p; p = NULL; end_cpu = strtoul(cpu_list, &p, 0); if (end_cpu >= INT_MAX || (*p != '\0' && *p != ',')) goto invalid; if (end_cpu < start_cpu) goto invalid; } else { end_cpu = start_cpu; } WARN_ONCE(end_cpu >= MAX_NR_CPUS, "Perf can support %d CPUs. " "Consider raising MAX_NR_CPUS\n", MAX_NR_CPUS); for (; start_cpu <= end_cpu; start_cpu++) { /* check for duplicates */ for (i = 0; i < nr_cpus; i++) if (tmp_cpus[i].cpu == (int)start_cpu) goto invalid; if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto invalid; tmp_cpus = tmp; } tmp_cpus[nr_cpus++].cpu = (int)start_cpu; } if (*p) ++p; cpu_list = p; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); else if (*cpu_list != '\0') cpus = cpu_map__default_new(); else cpus = perf_cpu_map__dummy_new(); invalid: free(tmp_cpus); out: return cpus; } struct perf_cpu perf_cpu_map__cpu(const struct perf_cpu_map *cpus, int idx) { struct perf_cpu result = { .cpu = -1 }; if (cpus && idx < RC_CHK_ACCESS(cpus)->nr) return RC_CHK_ACCESS(cpus)->map[idx]; return result; } int perf_cpu_map__nr(const struct perf_cpu_map *cpus) { return cpus ? RC_CHK_ACCESS(cpus)->nr : 1; } bool perf_cpu_map__empty(const struct perf_cpu_map *map) { return map ? RC_CHK_ACCESS(map)->map[0].cpu == -1 : true; } int perf_cpu_map__idx(const struct perf_cpu_map *cpus, struct perf_cpu cpu) { int low, high; if (!cpus) return -1; low = 0; high = RC_CHK_ACCESS(cpus)->nr; while (low < high) { int idx = (low + high) / 2; struct perf_cpu cpu_at_idx = RC_CHK_ACCESS(cpus)->map[idx]; if (cpu_at_idx.cpu == cpu.cpu) return idx; if (cpu_at_idx.cpu > cpu.cpu) high = idx; else low = idx + 1; } return -1; } bool perf_cpu_map__has(const struct perf_cpu_map *cpus, struct perf_cpu cpu) { return perf_cpu_map__idx(cpus, cpu) != -1; } struct perf_cpu perf_cpu_map__max(const struct perf_cpu_map *map) { struct perf_cpu result = { .cpu = -1 }; // cpu_map__trim_new() qsort()s it, cpu_map__default_new() sorts it as well. return RC_CHK_ACCESS(map)->nr > 0 ? RC_CHK_ACCESS(map)->map[RC_CHK_ACCESS(map)->nr - 1] : result; } /** Is 'b' a subset of 'a'. */ bool perf_cpu_map__is_subset(const struct perf_cpu_map *a, const struct perf_cpu_map *b) { if (a == b || !b) return true; if (!a || RC_CHK_ACCESS(b)->nr > RC_CHK_ACCESS(a)->nr) return false; for (int i = 0, j = 0; i < RC_CHK_ACCESS(a)->nr; i++) { if (RC_CHK_ACCESS(a)->map[i].cpu > RC_CHK_ACCESS(b)->map[j].cpu) return false; if (RC_CHK_ACCESS(a)->map[i].cpu == RC_CHK_ACCESS(b)->map[j].cpu) { j++; if (j == RC_CHK_ACCESS(b)->nr) return true; } } return false; } /* * Merge two cpumaps * * orig either gets freed and replaced with a new map, or reused * with no reference count change (similar to "realloc") * other has its reference count increased. */ struct perf_cpu_map *perf_cpu_map__merge(struct perf_cpu_map *orig, struct perf_cpu_map *other) { struct perf_cpu *tmp_cpus; int tmp_len; int i, j, k; struct perf_cpu_map *merged; if (perf_cpu_map__is_subset(orig, other)) return orig; if (perf_cpu_map__is_subset(other, orig)) { perf_cpu_map__put(orig); return perf_cpu_map__get(other); } tmp_len = RC_CHK_ACCESS(orig)->nr + RC_CHK_ACCESS(other)->nr; tmp_cpus = malloc(tmp_len * sizeof(struct perf_cpu)); if (!tmp_cpus) return NULL; /* Standard merge algorithm from wikipedia */ i = j = k = 0; while (i < RC_CHK_ACCESS(orig)->nr && j < RC_CHK_ACCESS(other)->nr) { if (RC_CHK_ACCESS(orig)->map[i].cpu <= RC_CHK_ACCESS(other)->map[j].cpu) { if (RC_CHK_ACCESS(orig)->map[i].cpu == RC_CHK_ACCESS(other)->map[j].cpu) j++; tmp_cpus[k++] = RC_CHK_ACCESS(orig)->map[i++]; } else tmp_cpus[k++] = RC_CHK_ACCESS(other)->map[j++]; } while (i < RC_CHK_ACCESS(orig)->nr) tmp_cpus[k++] = RC_CHK_ACCESS(orig)->map[i++]; while (j < RC_CHK_ACCESS(other)->nr) tmp_cpus[k++] = RC_CHK_ACCESS(other)->map[j++]; assert(k <= tmp_len); merged = cpu_map__trim_new(k, tmp_cpus); free(tmp_cpus); perf_cpu_map__put(orig); return merged; } |