Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | // SPDX-License-Identifier: GPL-2.0-only /* * ff-transaction.c - a part of driver for RME Fireface series * * Copyright (c) 2015-2017 Takashi Sakamoto */ #include "ff.h" static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port, int rcode) { struct snd_rawmidi_substream *substream = READ_ONCE(ff->rx_midi_substreams[port]); if (rcode_is_permanent_error(rcode)) { ff->rx_midi_error[port] = true; return; } if (rcode != RCODE_COMPLETE) { /* Transfer the message again, immediately. */ ff->next_ktime[port] = 0; schedule_work(&ff->rx_midi_work[port]); return; } snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]); ff->rx_bytes[port] = 0; if (!snd_rawmidi_transmit_empty(substream)) schedule_work(&ff->rx_midi_work[port]); } static void finish_transmit_midi0_msg(struct fw_card *card, int rcode, void *data, size_t length, void *callback_data) { struct snd_ff *ff = container_of(callback_data, struct snd_ff, transactions[0]); finish_transmit_midi_msg(ff, 0, rcode); } static void finish_transmit_midi1_msg(struct fw_card *card, int rcode, void *data, size_t length, void *callback_data) { struct snd_ff *ff = container_of(callback_data, struct snd_ff, transactions[1]); finish_transmit_midi_msg(ff, 1, rcode); } static void transmit_midi_msg(struct snd_ff *ff, unsigned int port) { struct snd_rawmidi_substream *substream = READ_ONCE(ff->rx_midi_substreams[port]); int quad_count; struct fw_device *fw_dev = fw_parent_device(ff->unit); unsigned long long addr; int generation; fw_transaction_callback_t callback; int tcode; if (substream == NULL || snd_rawmidi_transmit_empty(substream)) return; if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port]) return; /* Do it in next chance. */ if (ktime_after(ff->next_ktime[port], ktime_get())) { schedule_work(&ff->rx_midi_work[port]); return; } quad_count = ff->spec->protocol->fill_midi_msg(ff, substream, port); if (quad_count <= 0) return; if (port == 0) { addr = ff->spec->midi_rx_addrs[0]; callback = finish_transmit_midi0_msg; } else { addr = ff->spec->midi_rx_addrs[1]; callback = finish_transmit_midi1_msg; } /* Set interval to next transaction. */ ff->next_ktime[port] = ktime_add_ns(ktime_get(), ff->rx_bytes[port] * 8 * (NSEC_PER_SEC / 31250)); if (quad_count == 1) tcode = TCODE_WRITE_QUADLET_REQUEST; else tcode = TCODE_WRITE_BLOCK_REQUEST; /* * In Linux FireWire core, when generation is updated with memory * barrier, node id has already been updated. In this module, After * this smp_rmb(), load/store instructions to memory are completed. * Thus, both of generation and node id are available with recent * values. This is a light-serialization solution to handle bus reset * events on IEEE 1394 bus. */ generation = fw_dev->generation; smp_rmb(); fw_send_request(fw_dev->card, &ff->transactions[port], tcode, fw_dev->node_id, generation, fw_dev->max_speed, addr, &ff->msg_buf[port], quad_count * 4, callback, &ff->transactions[port]); } static void transmit_midi0_msg(struct work_struct *work) { struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]); transmit_midi_msg(ff, 0); } static void transmit_midi1_msg(struct work_struct *work) { struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]); transmit_midi_msg(ff, 1); } static void handle_msg(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct snd_ff *ff = callback_data; __le32 *buf = data; u32 tstamp = fw_request_get_timestamp(request); unsigned long flag; fw_send_response(card, request, RCODE_COMPLETE); offset -= ff->async_handler.offset; spin_lock_irqsave(&ff->lock, flag); ff->spec->protocol->handle_msg(ff, (unsigned int)offset, buf, length, tstamp); spin_unlock_irqrestore(&ff->lock, flag); } static int allocate_own_address(struct snd_ff *ff, int i) { struct fw_address_region midi_msg_region; int err; ff->async_handler.length = ff->spec->midi_addr_range; ff->async_handler.address_callback = handle_msg; ff->async_handler.callback_data = ff; midi_msg_region.start = 0x000100000000ull * i; midi_msg_region.end = midi_msg_region.start + ff->async_handler.length; err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region); if (err >= 0) { /* Controllers are allowed to register this region. */ if (ff->async_handler.offset & 0x0000ffffffff) { fw_core_remove_address_handler(&ff->async_handler); err = -EAGAIN; } } return err; } // Controllers are allowed to register higher 4 bytes of destination address to // receive asynchronous transactions for MIDI messages, while the way to // register lower 4 bytes of address is different depending on protocols. For // details, please refer to comments in protocol implementations. // // This driver expects userspace applications to configure registers for the // lower address because in most cases such registers has the other settings. int snd_ff_transaction_reregister(struct snd_ff *ff) { struct fw_card *fw_card = fw_parent_device(ff->unit)->card; u32 addr; __le32 reg; /* * Controllers are allowed to register its node ID and upper 2 byte of * local address to listen asynchronous transactions. */ addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32); reg = cpu_to_le32(addr); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, ff->spec->midi_high_addr, ®, sizeof(reg), 0); } int snd_ff_transaction_register(struct snd_ff *ff) { int i, err; /* * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should * be zero due to device specification. */ for (i = 0; i < 0xffff; i++) { err = allocate_own_address(ff, i); if (err != -EBUSY && err != -EAGAIN) break; } if (err < 0) return err; err = snd_ff_transaction_reregister(ff); if (err < 0) return err; INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg); INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg); return 0; } void snd_ff_transaction_unregister(struct snd_ff *ff) { __le32 reg; if (ff->async_handler.callback_data == NULL) return; ff->async_handler.callback_data = NULL; /* Release higher 4 bytes of address. */ reg = cpu_to_le32(0x00000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, ff->spec->midi_high_addr, ®, sizeof(reg), 0); fw_core_remove_address_handler(&ff->async_handler); } |