Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Linux Socket Filter - Kernel level socket filtering * * Based on the design of the Berkeley Packet Filter. The new * internal format has been designed by PLUMgrid: * * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com * * Authors: * * Jay Schulist <jschlst@samba.org> * Alexei Starovoitov <ast@plumgrid.com> * Daniel Borkmann <dborkman@redhat.com> * * Andi Kleen - Fix a few bad bugs and races. * Kris Katterjohn - Added many additional checks in bpf_check_classic() */ #include <uapi/linux/btf.h> #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/vmalloc.h> #include <linux/random.h> #include <linux/moduleloader.h> #include <linux/bpf.h> #include <linux/btf.h> #include <linux/objtool.h> #include <linux/rbtree_latch.h> #include <linux/kallsyms.h> #include <linux/rcupdate.h> #include <linux/perf_event.h> #include <linux/extable.h> #include <linux/log2.h> #include <linux/bpf_verifier.h> #include <linux/nodemask.h> #include <linux/nospec.h> #include <linux/bpf_mem_alloc.h> #include <linux/memcontrol.h> #include <asm/barrier.h> #include <asm/unaligned.h> /* Registers */ #define BPF_R0 regs[BPF_REG_0] #define BPF_R1 regs[BPF_REG_1] #define BPF_R2 regs[BPF_REG_2] #define BPF_R3 regs[BPF_REG_3] #define BPF_R4 regs[BPF_REG_4] #define BPF_R5 regs[BPF_REG_5] #define BPF_R6 regs[BPF_REG_6] #define BPF_R7 regs[BPF_REG_7] #define BPF_R8 regs[BPF_REG_8] #define BPF_R9 regs[BPF_REG_9] #define BPF_R10 regs[BPF_REG_10] /* Named registers */ #define DST regs[insn->dst_reg] #define SRC regs[insn->src_reg] #define FP regs[BPF_REG_FP] #define AX regs[BPF_REG_AX] #define ARG1 regs[BPF_REG_ARG1] #define CTX regs[BPF_REG_CTX] #define IMM insn->imm struct bpf_mem_alloc bpf_global_ma; bool bpf_global_ma_set; /* No hurry in this branch * * Exported for the bpf jit load helper. */ void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) { u8 *ptr = NULL; if (k >= SKF_NET_OFF) { ptr = skb_network_header(skb) + k - SKF_NET_OFF; } else if (k >= SKF_LL_OFF) { if (unlikely(!skb_mac_header_was_set(skb))) return NULL; ptr = skb_mac_header(skb) + k - SKF_LL_OFF; } if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) return ptr; return NULL; } struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); struct bpf_prog_aux *aux; struct bpf_prog *fp; size = round_up(size, PAGE_SIZE); fp = __vmalloc(size, gfp_flags); if (fp == NULL) return NULL; aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); if (aux == NULL) { vfree(fp); return NULL; } fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); if (!fp->active) { vfree(fp); kfree(aux); return NULL; } fp->pages = size / PAGE_SIZE; fp->aux = aux; fp->aux->prog = fp; fp->jit_requested = ebpf_jit_enabled(); fp->blinding_requested = bpf_jit_blinding_enabled(fp); #ifdef CONFIG_CGROUP_BPF aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID; #endif INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode); mutex_init(&fp->aux->used_maps_mutex); mutex_init(&fp->aux->dst_mutex); return fp; } struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); struct bpf_prog *prog; int cpu; prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags); if (!prog) return NULL; prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags); if (!prog->stats) { free_percpu(prog->active); kfree(prog->aux); vfree(prog); return NULL; } for_each_possible_cpu(cpu) { struct bpf_prog_stats *pstats; pstats = per_cpu_ptr(prog->stats, cpu); u64_stats_init(&pstats->syncp); } return prog; } EXPORT_SYMBOL_GPL(bpf_prog_alloc); int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog) { if (!prog->aux->nr_linfo || !prog->jit_requested) return 0; prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo, sizeof(*prog->aux->jited_linfo), bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN)); if (!prog->aux->jited_linfo) return -ENOMEM; return 0; } void bpf_prog_jit_attempt_done(struct bpf_prog *prog) { if (prog->aux->jited_linfo && (!prog->jited || !prog->aux->jited_linfo[0])) { kvfree(prog->aux->jited_linfo); prog->aux->jited_linfo = NULL; } kfree(prog->aux->kfunc_tab); prog->aux->kfunc_tab = NULL; } /* The jit engine is responsible to provide an array * for insn_off to the jited_off mapping (insn_to_jit_off). * * The idx to this array is the insn_off. Hence, the insn_off * here is relative to the prog itself instead of the main prog. * This array has one entry for each xlated bpf insn. * * jited_off is the byte off to the end of the jited insn. * * Hence, with * insn_start: * The first bpf insn off of the prog. The insn off * here is relative to the main prog. * e.g. if prog is a subprog, insn_start > 0 * linfo_idx: * The prog's idx to prog->aux->linfo and jited_linfo * * jited_linfo[linfo_idx] = prog->bpf_func * * For i > linfo_idx, * * jited_linfo[i] = prog->bpf_func + * insn_to_jit_off[linfo[i].insn_off - insn_start - 1] */ void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, const u32 *insn_to_jit_off) { u32 linfo_idx, insn_start, insn_end, nr_linfo, i; const struct bpf_line_info *linfo; void **jited_linfo; if (!prog->aux->jited_linfo) /* Userspace did not provide linfo */ return; linfo_idx = prog->aux->linfo_idx; linfo = &prog->aux->linfo[linfo_idx]; insn_start = linfo[0].insn_off; insn_end = insn_start + prog->len; jited_linfo = &prog->aux->jited_linfo[linfo_idx]; jited_linfo[0] = prog->bpf_func; nr_linfo = prog->aux->nr_linfo - linfo_idx; for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++) /* The verifier ensures that linfo[i].insn_off is * strictly increasing */ jited_linfo[i] = prog->bpf_func + insn_to_jit_off[linfo[i].insn_off - insn_start - 1]; } struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); struct bpf_prog *fp; u32 pages; size = round_up(size, PAGE_SIZE); pages = size / PAGE_SIZE; if (pages <= fp_old->pages) return fp_old; fp = __vmalloc(size, gfp_flags); if (fp) { memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); fp->pages = pages; fp->aux->prog = fp; /* We keep fp->aux from fp_old around in the new * reallocated structure. */ fp_old->aux = NULL; fp_old->stats = NULL; fp_old->active = NULL; __bpf_prog_free(fp_old); } return fp; } void __bpf_prog_free(struct bpf_prog *fp) { if (fp->aux) { mutex_destroy(&fp->aux->used_maps_mutex); mutex_destroy(&fp->aux->dst_mutex); kfree(fp->aux->poke_tab); kfree(fp->aux); } free_percpu(fp->stats); free_percpu(fp->active); vfree(fp); } int bpf_prog_calc_tag(struct bpf_prog *fp) { const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64); u32 raw_size = bpf_prog_tag_scratch_size(fp); u32 digest[SHA1_DIGEST_WORDS]; u32 ws[SHA1_WORKSPACE_WORDS]; u32 i, bsize, psize, blocks; struct bpf_insn *dst; bool was_ld_map; u8 *raw, *todo; __be32 *result; __be64 *bits; raw = vmalloc(raw_size); if (!raw) return -ENOMEM; sha1_init(digest); memset(ws, 0, sizeof(ws)); /* We need to take out the map fd for the digest calculation * since they are unstable from user space side. */ dst = (void *)raw; for (i = 0, was_ld_map = false; i < fp->len; i++) { dst[i] = fp->insnsi[i]; if (!was_ld_map && dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && (dst[i].src_reg == BPF_PSEUDO_MAP_FD || dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { was_ld_map = true; dst[i].imm = 0; } else if (was_ld_map && dst[i].code == 0 && dst[i].dst_reg == 0 && dst[i].src_reg == 0 && dst[i].off == 0) { was_ld_map = false; dst[i].imm = 0; } else { was_ld_map = false; } } psize = bpf_prog_insn_size(fp); memset(&raw[psize], 0, raw_size - psize); raw[psize++] = 0x80; bsize = round_up(psize, SHA1_BLOCK_SIZE); blocks = bsize / SHA1_BLOCK_SIZE; todo = raw; if (bsize - psize >= sizeof(__be64)) { bits = (__be64 *)(todo + bsize - sizeof(__be64)); } else { bits = (__be64 *)(todo + bsize + bits_offset); blocks++; } *bits = cpu_to_be64((psize - 1) << 3); while (blocks--) { sha1_transform(digest, todo, ws); todo += SHA1_BLOCK_SIZE; } result = (__force __be32 *)digest; for (i = 0; i < SHA1_DIGEST_WORDS; i++) result[i] = cpu_to_be32(digest[i]); memcpy(fp->tag, result, sizeof(fp->tag)); vfree(raw); return 0; } static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old, s32 end_new, s32 curr, const bool probe_pass) { const s64 imm_min = S32_MIN, imm_max = S32_MAX; s32 delta = end_new - end_old; s64 imm = insn->imm; if (curr < pos && curr + imm + 1 >= end_old) imm += delta; else if (curr >= end_new && curr + imm + 1 < end_new) imm -= delta; if (imm < imm_min || imm > imm_max) return -ERANGE; if (!probe_pass) insn->imm = imm; return 0; } static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old, s32 end_new, s32 curr, const bool probe_pass) { const s32 off_min = S16_MIN, off_max = S16_MAX; s32 delta = end_new - end_old; s32 off = insn->off; if (curr < pos && curr + off + 1 >= end_old) off += delta; else if (curr >= end_new && curr + off + 1 < end_new) off -= delta; if (off < off_min || off > off_max) return -ERANGE; if (!probe_pass) insn->off = off; return 0; } static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old, s32 end_new, const bool probe_pass) { u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0); struct bpf_insn *insn = prog->insnsi; int ret = 0; for (i = 0; i < insn_cnt; i++, insn++) { u8 code; /* In the probing pass we still operate on the original, * unpatched image in order to check overflows before we * do any other adjustments. Therefore skip the patchlet. */ if (probe_pass && i == pos) { i = end_new; insn = prog->insnsi + end_old; } if (bpf_pseudo_func(insn)) { ret = bpf_adj_delta_to_imm(insn, pos, end_old, end_new, i, probe_pass); if (ret) return ret; continue; } code = insn->code; if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || BPF_OP(code) == BPF_EXIT) continue; /* Adjust offset of jmps if we cross patch boundaries. */ if (BPF_OP(code) == BPF_CALL) { if (insn->src_reg != BPF_PSEUDO_CALL) continue; ret = bpf_adj_delta_to_imm(insn, pos, end_old, end_new, i, probe_pass); } else { ret = bpf_adj_delta_to_off(insn, pos, end_old, end_new, i, probe_pass); } if (ret) break; } return ret; } static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta) { struct bpf_line_info *linfo; u32 i, nr_linfo; nr_linfo = prog->aux->nr_linfo; if (!nr_linfo || !delta) return; linfo = prog->aux->linfo; for (i = 0; i < nr_linfo; i++) if (off < linfo[i].insn_off) break; /* Push all off < linfo[i].insn_off by delta */ for (; i < nr_linfo; i++) linfo[i].insn_off += delta; } struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, const struct bpf_insn *patch, u32 len) { u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; const u32 cnt_max = S16_MAX; struct bpf_prog *prog_adj; int err; /* Since our patchlet doesn't expand the image, we're done. */ if (insn_delta == 0) { memcpy(prog->insnsi + off, patch, sizeof(*patch)); return prog; } insn_adj_cnt = prog->len + insn_delta; /* Reject anything that would potentially let the insn->off * target overflow when we have excessive program expansions. * We need to probe here before we do any reallocation where * we afterwards may not fail anymore. */ if (insn_adj_cnt > cnt_max && (err = bpf_adj_branches(prog, off, off + 1, off + len, true))) return ERR_PTR(err); /* Several new instructions need to be inserted. Make room * for them. Likely, there's no need for a new allocation as * last page could have large enough tailroom. */ prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), GFP_USER); if (!prog_adj) return ERR_PTR(-ENOMEM); prog_adj->len = insn_adj_cnt; /* Patching happens in 3 steps: * * 1) Move over tail of insnsi from next instruction onwards, * so we can patch the single target insn with one or more * new ones (patching is always from 1 to n insns, n > 0). * 2) Inject new instructions at the target location. * 3) Adjust branch offsets if necessary. */ insn_rest = insn_adj_cnt - off - len; memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, sizeof(*patch) * insn_rest); memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); /* We are guaranteed to not fail at this point, otherwise * the ship has sailed to reverse to the original state. An * overflow cannot happen at this point. */ BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false)); bpf_adj_linfo(prog_adj, off, insn_delta); return prog_adj; } int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt) { /* Branch offsets can't overflow when program is shrinking, no need * to call bpf_adj_branches(..., true) here */ memmove(prog->insnsi + off, prog->insnsi + off + cnt, sizeof(struct bpf_insn) * (prog->len - off - cnt)); prog->len -= cnt; return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false)); } static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) { int i; for (i = 0; i < fp->aux->func_cnt; i++) bpf_prog_kallsyms_del(fp->aux->func[i]); } void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) { bpf_prog_kallsyms_del_subprogs(fp); bpf_prog_kallsyms_del(fp); } #ifdef CONFIG_BPF_JIT /* All BPF JIT sysctl knobs here. */ int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); int bpf_jit_harden __read_mostly; long bpf_jit_limit __read_mostly; long bpf_jit_limit_max __read_mostly; static void bpf_prog_ksym_set_addr(struct bpf_prog *prog) { WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); prog->aux->ksym.start = (unsigned long) prog->bpf_func; prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len; } static void bpf_prog_ksym_set_name(struct bpf_prog *prog) { char *sym = prog->aux->ksym.name; const char *end = sym + KSYM_NAME_LEN; const struct btf_type *type; const char *func_name; BUILD_BUG_ON(sizeof("bpf_prog_") + sizeof(prog->tag) * 2 + /* name has been null terminated. * We should need +1 for the '_' preceding * the name. However, the null character * is double counted between the name and the * sizeof("bpf_prog_") above, so we omit * the +1 here. */ sizeof(prog->aux->name) > KSYM_NAME_LEN); sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); /* prog->aux->name will be ignored if full btf name is available */ if (prog->aux->func_info_cnt) { type = btf_type_by_id(prog->aux->btf, prog->aux->func_info[prog->aux->func_idx].type_id); func_name = btf_name_by_offset(prog->aux->btf, type->name_off); snprintf(sym, (size_t)(end - sym), "_%s", func_name); return; } if (prog->aux->name[0]) snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); else *sym = 0; } static unsigned long bpf_get_ksym_start(struct latch_tree_node *n) { return container_of(n, struct bpf_ksym, tnode)->start; } static __always_inline bool bpf_tree_less(struct latch_tree_node *a, struct latch_tree_node *b) { return bpf_get_ksym_start(a) < bpf_get_ksym_start(b); } static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) { unsigned long val = (unsigned long)key; const struct bpf_ksym *ksym; ksym = container_of(n, struct bpf_ksym, tnode); if (val < ksym->start) return -1; if (val >= ksym->end) return 1; return 0; } static const struct latch_tree_ops bpf_tree_ops = { .less = bpf_tree_less, .comp = bpf_tree_comp, }; static DEFINE_SPINLOCK(bpf_lock); static LIST_HEAD(bpf_kallsyms); static struct latch_tree_root bpf_tree __cacheline_aligned; void bpf_ksym_add(struct bpf_ksym *ksym) { spin_lock_bh(&bpf_lock); WARN_ON_ONCE(!list_empty(&ksym->lnode)); list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms); latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops); spin_unlock_bh(&bpf_lock); } static void __bpf_ksym_del(struct bpf_ksym *ksym) { if (list_empty(&ksym->lnode)) return; latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops); list_del_rcu(&ksym->lnode); } void bpf_ksym_del(struct bpf_ksym *ksym) { spin_lock_bh(&bpf_lock); __bpf_ksym_del(ksym); spin_unlock_bh(&bpf_lock); } static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) { return fp->jited && !bpf_prog_was_classic(fp); } void bpf_prog_kallsyms_add(struct bpf_prog *fp) { if (!bpf_prog_kallsyms_candidate(fp) || !bpf_capable()) return; bpf_prog_ksym_set_addr(fp); bpf_prog_ksym_set_name(fp); fp->aux->ksym.prog = true; bpf_ksym_add(&fp->aux->ksym); } void bpf_prog_kallsyms_del(struct bpf_prog *fp) { if (!bpf_prog_kallsyms_candidate(fp)) return; bpf_ksym_del(&fp->aux->ksym); } static struct bpf_ksym *bpf_ksym_find(unsigned long addr) { struct latch_tree_node *n; n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); return n ? container_of(n, struct bpf_ksym, tnode) : NULL; } const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char *sym) { struct bpf_ksym *ksym; char *ret = NULL; rcu_read_lock(); ksym = bpf_ksym_find(addr); if (ksym) { unsigned long symbol_start = ksym->start; unsigned long symbol_end = ksym->end; strncpy(sym, ksym->name, KSYM_NAME_LEN); ret = sym; if (size) *size = symbol_end - symbol_start; if (off) *off = addr - symbol_start; } rcu_read_unlock(); return ret; } bool is_bpf_text_address(unsigned long addr) { bool ret; rcu_read_lock(); ret = bpf_ksym_find(addr) != NULL; rcu_read_unlock(); return ret; } static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) { struct bpf_ksym *ksym = bpf_ksym_find(addr); return ksym && ksym->prog ? container_of(ksym, struct bpf_prog_aux, ksym)->prog : NULL; } const struct exception_table_entry *search_bpf_extables(unsigned long addr) { const struct exception_table_entry *e = NULL; struct bpf_prog *prog; rcu_read_lock(); prog = bpf_prog_ksym_find(addr); if (!prog) goto out; if (!prog->aux->num_exentries) goto out; e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr); out: rcu_read_unlock(); return e; } int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { struct bpf_ksym *ksym; unsigned int it = 0; int ret = -ERANGE; if (!bpf_jit_kallsyms_enabled()) return ret; rcu_read_lock(); list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) { if (it++ != symnum) continue; strncpy(sym, ksym->name, KSYM_NAME_LEN); *value = ksym->start; *type = BPF_SYM_ELF_TYPE; ret = 0; break; } rcu_read_unlock(); return ret; } int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, struct bpf_jit_poke_descriptor *poke) { struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; static const u32 poke_tab_max = 1024; u32 slot = prog->aux->size_poke_tab; u32 size = slot + 1; if (size > poke_tab_max) return -ENOSPC; if (poke->tailcall_target || poke->tailcall_target_stable || poke->tailcall_bypass || poke->adj_off || poke->bypass_addr) return -EINVAL; switch (poke->reason) { case BPF_POKE_REASON_TAIL_CALL: if (!poke->tail_call.map) return -EINVAL; break; default: return -EINVAL; } tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL); if (!tab) return -ENOMEM; memcpy(&tab[slot], poke, sizeof(*poke)); prog->aux->size_poke_tab = size; prog->aux->poke_tab = tab; return slot; } /* * BPF program pack allocator. * * Most BPF programs are pretty small. Allocating a hole page for each * program is sometime a waste. Many small bpf program also adds pressure * to instruction TLB. To solve this issue, we introduce a BPF program pack * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86) * to host BPF programs. */ #define BPF_PROG_CHUNK_SHIFT 6 #define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT) #define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1)) struct bpf_prog_pack { struct list_head list; void *ptr; unsigned long bitmap[]; }; void bpf_jit_fill_hole_with_zero(void *area, unsigned int size) { memset(area, 0, size); } #define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE) static DEFINE_MUTEX(pack_mutex); static LIST_HEAD(pack_list); /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with * CONFIG_MMU=n. Use PAGE_SIZE in these cases. */ #ifdef PMD_SIZE #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes()) #else #define BPF_PROG_PACK_SIZE PAGE_SIZE #endif #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE) static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns) { struct bpf_prog_pack *pack; pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)), GFP_KERNEL); if (!pack) return NULL; pack->ptr = module_alloc(BPF_PROG_PACK_SIZE); if (!pack->ptr) { kfree(pack); return NULL; } bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE); bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE); list_add_tail(&pack->list, &pack_list); set_vm_flush_reset_perms(pack->ptr); set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE); return pack; } void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns) { unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size); struct bpf_prog_pack *pack; unsigned long pos; void *ptr = NULL; mutex_lock(&pack_mutex); if (size > BPF_PROG_PACK_SIZE) { size = round_up(size, PAGE_SIZE); ptr = module_alloc(size); if (ptr) { bpf_fill_ill_insns(ptr, size); set_vm_flush_reset_perms(ptr); set_memory_rox((unsigned long)ptr, size / PAGE_SIZE); } goto out; } list_for_each_entry(pack, &pack_list, list) { pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, nbits, 0); if (pos < BPF_PROG_CHUNK_COUNT) goto found_free_area; } pack = alloc_new_pack(bpf_fill_ill_insns); if (!pack) goto out; pos = 0; found_free_area: bitmap_set(pack->bitmap, pos, nbits); ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT); out: mutex_unlock(&pack_mutex); return ptr; } void bpf_prog_pack_free(struct bpf_binary_header *hdr) { struct bpf_prog_pack *pack = NULL, *tmp; unsigned int nbits; unsigned long pos; mutex_lock(&pack_mutex); if (hdr->size > BPF_PROG_PACK_SIZE) { module_memfree(hdr); goto out; } list_for_each_entry(tmp, &pack_list, list) { if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) { pack = tmp; break; } } if (WARN_ONCE(!pack, "bpf_prog_pack bug\n")) goto out; nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size); pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT; WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size), "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n"); bitmap_clear(pack->bitmap, pos, nbits); if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, BPF_PROG_CHUNK_COUNT, 0) == 0) { list_del(&pack->list); module_memfree(pack->ptr); kfree(pack); } out: mutex_unlock(&pack_mutex); } static atomic_long_t bpf_jit_current; /* Can be overridden by an arch's JIT compiler if it has a custom, * dedicated BPF backend memory area, or if neither of the two * below apply. */ u64 __weak bpf_jit_alloc_exec_limit(void) { #if defined(MODULES_VADDR) return MODULES_END - MODULES_VADDR; #else return VMALLOC_END - VMALLOC_START; #endif } static int __init bpf_jit_charge_init(void) { /* Only used as heuristic here to derive limit. */ bpf_jit_limit_max = bpf_jit_alloc_exec_limit(); bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1, PAGE_SIZE), LONG_MAX); return 0; } pure_initcall(bpf_jit_charge_init); int bpf_jit_charge_modmem(u32 size) { if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) { if (!bpf_capable()) { atomic_long_sub(size, &bpf_jit_current); return -EPERM; } } return 0; } void bpf_jit_uncharge_modmem(u32 size) { atomic_long_sub(size, &bpf_jit_current); } void *__weak bpf_jit_alloc_exec(unsigned long size) { return module_alloc(size); } void __weak bpf_jit_free_exec(void *addr) { module_memfree(addr); } struct bpf_binary_header * bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, unsigned int alignment, bpf_jit_fill_hole_t bpf_fill_ill_insns) { struct bpf_binary_header *hdr; u32 size, hole, start; WARN_ON_ONCE(!is_power_of_2(alignment) || alignment > BPF_IMAGE_ALIGNMENT); /* Most of BPF filters are really small, but if some of them * fill a page, allow at least 128 extra bytes to insert a * random section of illegal instructions. */ size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); if (bpf_jit_charge_modmem(size)) return NULL; hdr = bpf_jit_alloc_exec(size); if (!hdr) { bpf_jit_uncharge_modmem(size); return NULL; } /* Fill space with illegal/arch-dep instructions. */ bpf_fill_ill_insns(hdr, size); hdr->size = size; hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), PAGE_SIZE - sizeof(*hdr)); start = get_random_u32_below(hole) & ~(alignment - 1); /* Leave a random number of instructions before BPF code. */ *image_ptr = &hdr->image[start]; return hdr; } void bpf_jit_binary_free(struct bpf_binary_header *hdr) { u32 size = hdr->size; bpf_jit_free_exec(hdr); bpf_jit_uncharge_modmem(size); } /* Allocate jit binary from bpf_prog_pack allocator. * Since the allocated memory is RO+X, the JIT engine cannot write directly * to the memory. To solve this problem, a RW buffer is also allocated at * as the same time. The JIT engine should calculate offsets based on the * RO memory address, but write JITed program to the RW buffer. Once the * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies * the JITed program to the RO memory. */ struct bpf_binary_header * bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr, unsigned int alignment, struct bpf_binary_header **rw_header, u8 **rw_image, bpf_jit_fill_hole_t bpf_fill_ill_insns) { struct bpf_binary_header *ro_header; u32 size, hole, start; WARN_ON_ONCE(!is_power_of_2(alignment) || alignment > BPF_IMAGE_ALIGNMENT); /* add 16 bytes for a random section of illegal instructions */ size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE); if (bpf_jit_charge_modmem(size)) return NULL; ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns); if (!ro_header) { bpf_jit_uncharge_modmem(size); return NULL; } *rw_header = kvmalloc(size, GFP_KERNEL); if (!*rw_header) { bpf_arch_text_copy(&ro_header->size, &size, sizeof(size)); bpf_prog_pack_free(ro_header); bpf_jit_uncharge_modmem(size); return NULL; } /* Fill space with illegal/arch-dep instructions. */ bpf_fill_ill_insns(*rw_header, size); (*rw_header)->size = size; hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)), BPF_PROG_CHUNK_SIZE - sizeof(*ro_header)); start = get_random_u32_below(hole) & ~(alignment - 1); *image_ptr = &ro_header->image[start]; *rw_image = &(*rw_header)->image[start]; return ro_header; } /* Copy JITed text from rw_header to its final location, the ro_header. */ int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, struct bpf_binary_header *ro_header, struct bpf_binary_header *rw_header) { void *ptr; ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size); kvfree(rw_header); if (IS_ERR(ptr)) { bpf_prog_pack_free(ro_header); return PTR_ERR(ptr); } return 0; } /* bpf_jit_binary_pack_free is called in two different scenarios: * 1) when the program is freed after; * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize). * For case 2), we need to free both the RO memory and the RW buffer. * * bpf_jit_binary_pack_free requires proper ro_header->size. However, * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size * must be set with either bpf_jit_binary_pack_finalize (normal path) or * bpf_arch_text_copy (when jit fails). */ void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, struct bpf_binary_header *rw_header) { u32 size = ro_header->size; bpf_prog_pack_free(ro_header); kvfree(rw_header); bpf_jit_uncharge_modmem(size); } struct bpf_binary_header * bpf_jit_binary_pack_hdr(const struct bpf_prog *fp) { unsigned long real_start = (unsigned long)fp->bpf_func; unsigned long addr; addr = real_start & BPF_PROG_CHUNK_MASK; return (void *)addr; } static inline struct bpf_binary_header * bpf_jit_binary_hdr(const struct bpf_prog *fp) { unsigned long real_start = (unsigned long)fp->bpf_func; unsigned long addr; addr = real_start & PAGE_MASK; return (void *)addr; } /* This symbol is only overridden by archs that have different * requirements than the usual eBPF JITs, f.e. when they only * implement cBPF JIT, do not set images read-only, etc. */ void __weak bpf_jit_free(struct bpf_prog *fp) { if (fp->jited) { struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); bpf_jit_binary_free(hdr); WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); } bpf_prog_unlock_free(fp); } int bpf_jit_get_func_addr(const struct bpf_prog *prog, const struct bpf_insn *insn, bool extra_pass, u64 *func_addr, bool *func_addr_fixed) { s16 off = insn->off; s32 imm = insn->imm; u8 *addr; int err; *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL; if (!*func_addr_fixed) { /* Place-holder address till the last pass has collected * all addresses for JITed subprograms in which case we * can pick them up from prog->aux. */ if (!extra_pass) addr = NULL; else if (prog->aux->func && off >= 0 && off < prog->aux->func_cnt) addr = (u8 *)prog->aux->func[off]->bpf_func; else return -EINVAL; } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && bpf_jit_supports_far_kfunc_call()) { err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr); if (err) return err; } else { /* Address of a BPF helper call. Since part of the core * kernel, it's always at a fixed location. __bpf_call_base * and the helper with imm relative to it are both in core * kernel. */ addr = (u8 *)__bpf_call_base + imm; } *func_addr = (unsigned long)addr; return 0; } static int bpf_jit_blind_insn(const struct bpf_insn *from, const struct bpf_insn *aux, struct bpf_insn *to_buff, bool emit_zext) { struct bpf_insn *to = to_buff; u32 imm_rnd = get_random_u32(); s16 off; BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); /* Constraints on AX register: * * AX register is inaccessible from user space. It is mapped in * all JITs, and used here for constant blinding rewrites. It is * typically "stateless" meaning its contents are only valid within * the executed instruction, but not across several instructions. * There are a few exceptions however which are further detailed * below. * * Constant blinding is only used by JITs, not in the interpreter. * The interpreter uses AX in some occasions as a local temporary * register e.g. in DIV or MOD instructions. * * In restricted circumstances, the verifier can also use the AX * register for rewrites as long as they do not interfere with * the above cases! */ if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX) goto out; if (from->imm == 0 && (from->code == (BPF_ALU | BPF_MOV | BPF_K) || from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); goto out; } switch (from->code) { case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX); break; case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX); break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSET | BPF_K: /* Accommodate for extra offset in case of a backjump. */ off = from->off; if (off < 0) off -= 2; *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); break; case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: /* Accommodate for extra offset in case of a backjump. */ off = from->off; if (off < 0) off -= 2; *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX, off); break; case BPF_LD | BPF_IMM | BPF_DW: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); break; case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); if (emit_zext) *to++ = BPF_ZEXT_REG(BPF_REG_AX); *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); break; case BPF_ST | BPF_MEM | BPF_DW: case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); break; } out: return to - to_buff; } static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, gfp_t gfp_extra_flags) { gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; struct bpf_prog *fp; fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags); if (fp != NULL) { /* aux->prog still points to the fp_other one, so * when promoting the clone to the real program, * this still needs to be adapted. */ memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); } return fp; } static void bpf_prog_clone_free(struct bpf_prog *fp) { /* aux was stolen by the other clone, so we cannot free * it from this path! It will be freed eventually by the * other program on release. * * At this point, we don't need a deferred release since * clone is guaranteed to not be locked. */ fp->aux = NULL; fp->stats = NULL; fp->active = NULL; __bpf_prog_free(fp); } void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) { /* We have to repoint aux->prog to self, as we don't * know whether fp here is the clone or the original. */ fp->aux->prog = fp; bpf_prog_clone_free(fp_other); } struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) { struct bpf_insn insn_buff[16], aux[2]; struct bpf_prog *clone, *tmp; int insn_delta, insn_cnt; struct bpf_insn *insn; int i, rewritten; if (!prog->blinding_requested || prog->blinded) return prog; clone = bpf_prog_clone_create(prog, GFP_USER); if (!clone) return ERR_PTR(-ENOMEM); insn_cnt = clone->len; insn = clone->insnsi; for (i = 0; i < insn_cnt; i++, insn++) { if (bpf_pseudo_func(insn)) { /* ld_imm64 with an address of bpf subprog is not * a user controlled constant. Don't randomize it, * since it will conflict with jit_subprogs() logic. */ insn++; i++; continue; } /* We temporarily need to hold the original ld64 insn * so that we can still access the first part in the * second blinding run. */ if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && insn[1].code == 0) memcpy(aux, insn, sizeof(aux)); rewritten = bpf_jit_blind_insn(insn, aux, insn_buff, clone->aux->verifier_zext); if (!rewritten) continue; tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); if (IS_ERR(tmp)) { /* Patching may have repointed aux->prog during * realloc from the original one, so we need to * fix it up here on error. */ bpf_jit_prog_release_other(prog, clone); return tmp; } clone = tmp; insn_delta = rewritten - 1; /* Walk new program and skip insns we just inserted. */ insn = clone->insnsi + i + insn_delta; insn_cnt += insn_delta; i += insn_delta; } clone->blinded = 1; return clone; } #endif /* CONFIG_BPF_JIT */ /* Base function for offset calculation. Needs to go into .text section, * therefore keeping it non-static as well; will also be used by JITs * anyway later on, so do not let the compiler omit it. This also needs * to go into kallsyms for correlation from e.g. bpftool, so naming * must not change. */ noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) { return 0; } EXPORT_SYMBOL_GPL(__bpf_call_base); /* All UAPI available opcodes. */ #define BPF_INSN_MAP(INSN_2, INSN_3) \ /* 32 bit ALU operations. */ \ /* Register based. */ \ INSN_3(ALU, ADD, X), \ INSN_3(ALU, SUB, X), \ INSN_3(ALU, AND, X), \ INSN_3(ALU, OR, X), \ INSN_3(ALU, LSH, X), \ INSN_3(ALU, RSH, X), \ INSN_3(ALU, XOR, X), \ INSN_3(ALU, MUL, X), \ INSN_3(ALU, MOV, X), \ INSN_3(ALU, ARSH, X), \ INSN_3(ALU, DIV, X), \ INSN_3(ALU, MOD, X), \ INSN_2(ALU, NEG), \ INSN_3(ALU, END, TO_BE), \ INSN_3(ALU, END, TO_LE), \ /* Immediate based. */ \ INSN_3(ALU, ADD, K), \ INSN_3(ALU, SUB, K), \ INSN_3(ALU, AND, K), \ INSN_3(ALU, OR, K), \ INSN_3(ALU, LSH, K), \ INSN_3(ALU, RSH, K), \ INSN_3(ALU, XOR, K), \ INSN_3(ALU, MUL, K), \ INSN_3(ALU, MOV, K), \ INSN_3(ALU, ARSH, K), \ INSN_3(ALU, DIV, K), \ INSN_3(ALU, MOD, K), \ /* 64 bit ALU operations. */ \ /* Register based. */ \ INSN_3(ALU64, ADD, X), \ INSN_3(ALU64, SUB, X), \ INSN_3(ALU64, AND, X), \ INSN_3(ALU64, OR, X), \ INSN_3(ALU64, LSH, X), \ INSN_3(ALU64, RSH, X), \ INSN_3(ALU64, XOR, X), \ INSN_3(ALU64, MUL, X), \ INSN_3(ALU64, MOV, X), \ INSN_3(ALU64, ARSH, X), \ INSN_3(ALU64, DIV, X), \ INSN_3(ALU64, MOD, X), \ INSN_2(ALU64, NEG), \ /* Immediate based. */ \ INSN_3(ALU64, ADD, K), \ INSN_3(ALU64, SUB, K), \ INSN_3(ALU64, AND, K), \ INSN_3(ALU64, OR, K), \ INSN_3(ALU64, LSH, K), \ INSN_3(ALU64, RSH, K), \ INSN_3(ALU64, XOR, K), \ INSN_3(ALU64, MUL, K), \ INSN_3(ALU64, MOV, K), \ INSN_3(ALU64, ARSH, K), \ INSN_3(ALU64, DIV, K), \ INSN_3(ALU64, MOD, K), \ /* Call instruction. */ \ INSN_2(JMP, CALL), \ /* Exit instruction. */ \ INSN_2(JMP, EXIT), \ /* 32-bit Jump instructions. */ \ /* Register based. */ \ INSN_3(JMP32, JEQ, X), \ INSN_3(JMP32, JNE, X), \ INSN_3(JMP32, JGT, X), \ INSN_3(JMP32, JLT, X), \ INSN_3(JMP32, JGE, X), \ INSN_3(JMP32, JLE, X), \ INSN_3(JMP32, JSGT, X), \ INSN_3(JMP32, JSLT, X), \ INSN_3(JMP32, JSGE, X), \ INSN_3(JMP32, JSLE, X), \ INSN_3(JMP32, JSET, X), \ /* Immediate based. */ \ INSN_3(JMP32, JEQ, K), \ INSN_3(JMP32, JNE, K), \ INSN_3(JMP32, JGT, K), \ INSN_3(JMP32, JLT, K), \ INSN_3(JMP32, JGE, K), \ INSN_3(JMP32, JLE, K), \ INSN_3(JMP32, JSGT, K), \ INSN_3(JMP32, JSLT, K), \ INSN_3(JMP32, JSGE, K), \ INSN_3(JMP32, JSLE, K), \ INSN_3(JMP32, JSET, K), \ /* Jump instructions. */ \ /* Register based. */ \ INSN_3(JMP, JEQ, X), \ INSN_3(JMP, JNE, X), \ INSN_3(JMP, JGT, X), \ INSN_3(JMP, JLT, X), \ INSN_3(JMP, JGE, X), \ INSN_3(JMP, JLE, X), \ INSN_3(JMP, JSGT, X), \ INSN_3(JMP, JSLT, X), \ INSN_3(JMP, JSGE, X), \ INSN_3(JMP, JSLE, X), \ INSN_3(JMP, JSET, X), \ /* Immediate based. */ \ INSN_3(JMP, JEQ, K), \ INSN_3(JMP, JNE, K), \ INSN_3(JMP, JGT, K), \ INSN_3(JMP, JLT, K), \ INSN_3(JMP, JGE, K), \ INSN_3(JMP, JLE, K), \ INSN_3(JMP, JSGT, K), \ INSN_3(JMP, JSLT, K), \ INSN_3(JMP, JSGE, K), \ INSN_3(JMP, JSLE, K), \ INSN_3(JMP, JSET, K), \ INSN_2(JMP, JA), \ /* Store instructions. */ \ /* Register based. */ \ INSN_3(STX, MEM, B), \ INSN_3(STX, MEM, H), \ INSN_3(STX, MEM, W), \ INSN_3(STX, MEM, DW), \ INSN_3(STX, ATOMIC, W), \ INSN_3(STX, ATOMIC, DW), \ /* Immediate based. */ \ INSN_3(ST, MEM, B), \ INSN_3(ST, MEM, H), \ INSN_3(ST, MEM, W), \ INSN_3(ST, MEM, DW), \ /* Load instructions. */ \ /* Register based. */ \ INSN_3(LDX, MEM, B), \ INSN_3(LDX, MEM, H), \ INSN_3(LDX, MEM, W), \ INSN_3(LDX, MEM, DW), \ /* Immediate based. */ \ INSN_3(LD, IMM, DW) bool bpf_opcode_in_insntable(u8 code) { #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true static const bool public_insntable[256] = { [0 ... 255] = false, /* Now overwrite non-defaults ... */ BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ [BPF_LD | BPF_ABS | BPF_B] = true, [BPF_LD | BPF_ABS | BPF_H] = true, [BPF_LD | BPF_ABS | BPF_W] = true, [BPF_LD | BPF_IND | BPF_B] = true, [BPF_LD | BPF_IND | BPF_H] = true, [BPF_LD | BPF_IND | BPF_W] = true, }; #undef BPF_INSN_3_TBL #undef BPF_INSN_2_TBL return public_insntable[code]; } #ifndef CONFIG_BPF_JIT_ALWAYS_ON u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) { memset(dst, 0, size); return -EFAULT; } /** * ___bpf_prog_run - run eBPF program on a given context * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers * @insn: is the array of eBPF instructions * * Decode and execute eBPF instructions. * * Return: whatever value is in %BPF_R0 at program exit */ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn) { #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z static const void * const jumptable[256] __annotate_jump_table = { [0 ... 255] = &&default_label, /* Now overwrite non-defaults ... */ BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), /* Non-UAPI available opcodes. */ [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC, [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B, [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H, [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W, [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW, }; #undef BPF_INSN_3_LBL #undef BPF_INSN_2_LBL u32 tail_call_cnt = 0; #define CONT ({ insn++; goto select_insn; }) #define CONT_JMP ({ insn++; goto select_insn; }) select_insn: goto *jumptable[insn->code]; /* Explicitly mask the register-based shift amounts with 63 or 31 * to avoid undefined behavior. Normally this won't affect the * generated code, for example, in case of native 64 bit archs such * as x86-64 or arm64, the compiler is optimizing the AND away for * the interpreter. In case of JITs, each of the JIT backends compiles * the BPF shift operations to machine instructions which produce * implementation-defined results in such a case; the resulting * contents of the register may be arbitrary, but program behaviour * as a whole remains defined. In other words, in case of JIT backends, * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation. */ /* ALU (shifts) */ #define SHT(OPCODE, OP) \ ALU64_##OPCODE##_X: \ DST = DST OP (SRC & 63); \ CONT; \ ALU_##OPCODE##_X: \ DST = (u32) DST OP ((u32) SRC & 31); \ CONT; \ ALU64_##OPCODE##_K: \ DST = DST OP IMM; \ CONT; \ ALU_##OPCODE##_K: \ DST = (u32) DST OP (u32) IMM; \ CONT; /* ALU (rest) */ #define ALU(OPCODE, OP) \ ALU64_##OPCODE##_X: \ DST = DST OP SRC; \ CONT; \ ALU_##OPCODE##_X: \ DST = (u32) DST OP (u32) SRC; \ CONT; \ ALU64_##OPCODE##_K: \ DST = DST OP IMM; \ CONT; \ ALU_##OPCODE##_K: \ DST = (u32) DST OP (u32) IMM; \ CONT; ALU(ADD, +) ALU(SUB, -) ALU(AND, &) ALU(OR, |) ALU(XOR, ^) ALU(MUL, *) SHT(LSH, <<) SHT(RSH, >>) #undef SHT #undef ALU ALU_NEG: DST = (u32) -DST; CONT; ALU64_NEG: DST = -DST; CONT; ALU_MOV_X: DST = (u32) SRC; CONT; ALU_MOV_K: DST = (u32) IMM; CONT; ALU64_MOV_X: DST = SRC; CONT; ALU64_MOV_K: DST = IMM; CONT; LD_IMM_DW: DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; insn++; CONT; ALU_ARSH_X: DST = (u64) (u32) (((s32) DST) >> (SRC & 31)); CONT; ALU_ARSH_K: DST = (u64) (u32) (((s32) DST) >> IMM); CONT; ALU64_ARSH_X: (*(s64 *) &DST) >>= (SRC & 63); CONT; ALU64_ARSH_K: (*(s64 *) &DST) >>= IMM; CONT; ALU64_MOD_X: div64_u64_rem(DST, SRC, &AX); DST = AX; CONT; ALU_MOD_X: AX = (u32) DST; DST = do_div(AX, (u32) SRC); CONT; ALU64_MOD_K: div64_u64_rem(DST, IMM, &AX); DST = AX; CONT; ALU_MOD_K: AX = (u32) DST; DST = do_div(AX, (u32) IMM); CONT; ALU64_DIV_X: DST = div64_u64(DST, SRC); CONT; ALU_DIV_X: AX = (u32) DST; do_div(AX, (u32) SRC); DST = (u32) AX; CONT; ALU64_DIV_K: DST = div64_u64(DST, IMM); CONT; ALU_DIV_K: AX = (u32) DST; do_div(AX, (u32) IMM); DST = (u32) AX; CONT; ALU_END_TO_BE: switch (IMM) { case 16: DST = (__force u16) cpu_to_be16(DST); break; case 32: DST = (__force u32) cpu_to_be32(DST); break; case 64: DST = (__force u64) cpu_to_be64(DST); break; } CONT; ALU_END_TO_LE: switch (IMM) { case 16: DST = (__force u16) cpu_to_le16(DST); break; case 32: DST = (__force u32) cpu_to_le32(DST); break; case 64: DST = (__force u64) cpu_to_le64(DST); break; } CONT; /* CALL */ JMP_CALL: /* Function call scratches BPF_R1-BPF_R5 registers, * preserves BPF_R6-BPF_R9, and stores return value * into BPF_R0. */ BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, BPF_R4, BPF_R5); CONT; JMP_CALL_ARGS: BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, BPF_R3, BPF_R4, BPF_R5, insn + insn->off + 1); CONT; JMP_TAIL_CALL: { struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_prog *prog; u32 index = BPF_R3; if (unlikely(index >= array->map.max_entries)) goto out; if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT)) goto out; tail_call_cnt++; prog = READ_ONCE(array->ptrs[index]); if (!prog) goto out; /* ARG1 at this point is guaranteed to point to CTX from * the verifier side due to the fact that the tail call is * handled like a helper, that is, bpf_tail_call_proto, * where arg1_type is ARG_PTR_TO_CTX. */ insn = prog->insnsi; goto select_insn; out: CONT; } JMP_JA: insn += insn->off; CONT; JMP_EXIT: return BPF_R0; /* JMP */ #define COND_JMP(SIGN, OPCODE, CMP_OP) \ JMP_##OPCODE##_X: \ if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP32_##OPCODE##_X: \ if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP_##OPCODE##_K: \ if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP32_##OPCODE##_K: \ if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; COND_JMP(u, JEQ, ==) COND_JMP(u, JNE, !=) COND_JMP(u, JGT, >) COND_JMP(u, JLT, <) COND_JMP(u, JGE, >=) COND_JMP(u, JLE, <=) COND_JMP(u, JSET, &) COND_JMP(s, JSGT, >) COND_JMP(s, JSLT, <) COND_JMP(s, JSGE, >=) COND_JMP(s, JSLE, <=) #undef COND_JMP /* ST, STX and LDX*/ ST_NOSPEC: /* Speculation barrier for mitigating Speculative Store Bypass. * In case of arm64, we rely on the firmware mitigation as * controlled via the ssbd kernel parameter. Whenever the * mitigation is enabled, it works for all of the kernel code * with no need to provide any additional instructions here. * In case of x86, we use 'lfence' insn for mitigation. We * reuse preexisting logic from Spectre v1 mitigation that * happens to produce the required code on x86 for v4 as well. */ barrier_nospec(); CONT; #define LDST(SIZEOP, SIZE) \ STX_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ CONT; \ ST_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ CONT; \ LDX_MEM_##SIZEOP: \ DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ CONT; \ LDX_PROBE_MEM_##SIZEOP: \ bpf_probe_read_kernel(&DST, sizeof(SIZE), \ (const void *)(long) (SRC + insn->off)); \ DST = *((SIZE *)&DST); \ CONT; LDST(B, u8) LDST(H, u16) LDST(W, u32) LDST(DW, u64) #undef LDST #define ATOMIC_ALU_OP(BOP, KOP) \ case BOP: \ if (BPF_SIZE(insn->code) == BPF_W) \ atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \ (DST + insn->off)); \ else \ atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \ (DST + insn->off)); \ break; \ case BOP | BPF_FETCH: \ if (BPF_SIZE(insn->code) == BPF_W) \ SRC = (u32) atomic_fetch_##KOP( \ (u32) SRC, \ (atomic_t *)(unsigned long) (DST + insn->off)); \ else \ SRC = (u64) atomic64_fetch_##KOP( \ (u64) SRC, \ (atomic64_t *)(unsigned long) (DST + insn->off)); \ break; STX_ATOMIC_DW: STX_ATOMIC_W: switch (IMM) { ATOMIC_ALU_OP(BPF_ADD, add) ATOMIC_ALU_OP(BPF_AND, and) ATOMIC_ALU_OP(BPF_OR, or) ATOMIC_ALU_OP(BPF_XOR, xor) #undef ATOMIC_ALU_OP case BPF_XCHG: if (BPF_SIZE(insn->code) == BPF_W) SRC = (u32) atomic_xchg( (atomic_t *)(unsigned long) (DST + insn->off), (u32) SRC); else SRC = (u64) atomic64_xchg( (atomic64_t *)(unsigned long) (DST + insn->off), (u64) SRC); break; case BPF_CMPXCHG: if (BPF_SIZE(insn->code) == BPF_W) BPF_R0 = (u32) atomic_cmpxchg( (atomic_t *)(unsigned long) (DST + insn->off), (u32) BPF_R0, (u32) SRC); else BPF_R0 = (u64) atomic64_cmpxchg( (atomic64_t *)(unsigned long) (DST + insn->off), (u64) BPF_R0, (u64) SRC); break; default: goto default_label; } CONT; default_label: /* If we ever reach this, we have a bug somewhere. Die hard here * instead of just returning 0; we could be somewhere in a subprog, * so execution could continue otherwise which we do /not/ want. * * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). */ pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n", insn->code, insn->imm); BUG_ON(1); return 0; } #define PROG_NAME(stack_size) __bpf_prog_run##stack_size #define DEFINE_BPF_PROG_RUN(stack_size) \ static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ { \ u64 stack[stack_size / sizeof(u64)]; \ u64 regs[MAX_BPF_EXT_REG] = {}; \ \ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ ARG1 = (u64) (unsigned long) ctx; \ return ___bpf_prog_run(regs, insn); \ } #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ const struct bpf_insn *insn) \ { \ u64 stack[stack_size / sizeof(u64)]; \ u64 regs[MAX_BPF_EXT_REG]; \ \ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ BPF_R1 = r1; \ BPF_R2 = r2; \ BPF_R3 = r3; \ BPF_R4 = r4; \ BPF_R5 = r5; \ return ___bpf_prog_run(regs, insn); \ } #define EVAL1(FN, X) FN(X) #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), static unsigned int (*interpreters[])(const void *ctx, const struct bpf_insn *insn) = { EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) }; #undef PROG_NAME_LIST #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, const struct bpf_insn *insn) = { EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) }; #undef PROG_NAME_LIST void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) { stack_depth = max_t(u32, stack_depth, 1); insn->off = (s16) insn->imm; insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - __bpf_call_base_args; insn->code = BPF_JMP | BPF_CALL_ARGS; } #else static unsigned int __bpf_prog_ret0_warn(const void *ctx, const struct bpf_insn *insn) { /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON * is not working properly, so warn about it! */ WARN_ON_ONCE(1); return 0; } #endif bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp) { enum bpf_prog_type prog_type = resolve_prog_type(fp); bool ret; if (fp->kprobe_override) return false; /* XDP programs inserted into maps are not guaranteed to run on * a particular netdev (and can run outside driver context entirely * in the case of devmap and cpumap). Until device checks * are implemented, prohibit adding dev-bound programs to program maps. */ if (bpf_prog_is_dev_bound(fp->aux)) return false; spin_lock(&map->owner.lock); if (!map->owner.type) { /* There's no owner yet where we could check for * compatibility. */ map->owner.type = prog_type; map->owner.jited = fp->jited; map->owner.xdp_has_frags = fp->aux->xdp_has_frags; ret = true; } else { ret = map->owner.type == prog_type && map->owner.jited == fp->jited && map->owner.xdp_has_frags == fp->aux->xdp_has_frags; } spin_unlock(&map->owner.lock); return ret; } static int bpf_check_tail_call(const struct bpf_prog *fp) { struct bpf_prog_aux *aux = fp->aux; int i, ret = 0; mutex_lock(&aux->used_maps_mutex); for (i = 0; i < aux->used_map_cnt; i++) { struct bpf_map *map = aux->used_maps[i]; if (!map_type_contains_progs(map)) continue; if (!bpf_prog_map_compatible(map, fp)) { ret = -EINVAL; goto out; } } out: mutex_unlock(&aux->used_maps_mutex); return ret; } static void bpf_prog_select_func(struct bpf_prog *fp) { #ifndef CONFIG_BPF_JIT_ALWAYS_ON u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; #else fp->bpf_func = __bpf_prog_ret0_warn; #endif } /** * bpf_prog_select_runtime - select exec runtime for BPF program * @fp: bpf_prog populated with BPF program * @err: pointer to error variable * * Try to JIT eBPF program, if JIT is not available, use interpreter. * The BPF program will be executed via bpf_prog_run() function. * * Return: the &fp argument along with &err set to 0 for success or * a negative errno code on failure */ struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) { /* In case of BPF to BPF calls, verifier did all the prep * work with regards to JITing, etc. */ bool jit_needed = false; if (fp->bpf_func) goto finalize; if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) || bpf_prog_has_kfunc_call(fp)) jit_needed = true; bpf_prog_select_func(fp); /* eBPF JITs can rewrite the program in case constant * blinding is active. However, in case of error during * blinding, bpf_int_jit_compile() must always return a * valid program, which in this case would simply not * be JITed, but falls back to the interpreter. */ if (!bpf_prog_is_offloaded(fp->aux)) { *err = bpf_prog_alloc_jited_linfo(fp); if (*err) return fp; fp = bpf_int_jit_compile(fp); bpf_prog_jit_attempt_done(fp); if (!fp->jited && jit_needed) { *err = -ENOTSUPP; return fp; } } else { *err = bpf_prog_offload_compile(fp); if (*err) return fp; } finalize: bpf_prog_lock_ro(fp); /* The tail call compatibility check can only be done at * this late stage as we need to determine, if we deal * with JITed or non JITed program concatenations and not * all eBPF JITs might immediately support all features. */ *err = bpf_check_tail_call(fp); return fp; } EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); static unsigned int __bpf_prog_ret1(const void *ctx, const struct bpf_insn *insn) { return 1; } static struct bpf_prog_dummy { struct bpf_prog prog; } dummy_bpf_prog = { .prog = { .bpf_func = __bpf_prog_ret1, }, }; struct bpf_empty_prog_array bpf_empty_prog_array = { .null_prog = NULL, }; EXPORT_SYMBOL(bpf_empty_prog_array); struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) { if (prog_cnt) return kzalloc(sizeof(struct bpf_prog_array) + sizeof(struct bpf_prog_array_item) * (prog_cnt + 1), flags); return &bpf_empty_prog_array.hdr; } void bpf_prog_array_free(struct bpf_prog_array *progs) { if (!progs || progs == &bpf_empty_prog_array.hdr) return; kfree_rcu(progs, rcu); } static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu) { struct bpf_prog_array *progs; /* If RCU Tasks Trace grace period implies RCU grace period, there is * no need to call kfree_rcu(), just call kfree() directly. */ progs = container_of(rcu, struct bpf_prog_array, rcu); if (rcu_trace_implies_rcu_gp()) kfree(progs); else kfree_rcu(progs, rcu); } void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs) { if (!progs || progs == &bpf_empty_prog_array.hdr) return; call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb); } int bpf_prog_array_length(struct bpf_prog_array *array) { struct bpf_prog_array_item *item; u32 cnt = 0; for (item = array->items; item->prog; item++) if (item->prog != &dummy_bpf_prog.prog) cnt++; return cnt; } bool bpf_prog_array_is_empty(struct bpf_prog_array *array) { struct bpf_prog_array_item *item; for (item = array->items; item->prog; item++) if (item->prog != &dummy_bpf_prog.prog) return false; return true; } static bool bpf_prog_array_copy_core(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt) { struct bpf_prog_array_item *item; int i = 0; for (item = array->items; item->prog; item++) { if (item->prog == &dummy_bpf_prog.prog) continue; prog_ids[i] = item->prog->aux->id; if (++i == request_cnt) { item++; break; } } return !!(item->prog); } int bpf_prog_array_copy_to_user(struct bpf_prog_array *array, __u32 __user *prog_ids, u32 cnt) { unsigned long err = 0; bool nospc; u32 *ids; /* users of this function are doing: * cnt = bpf_prog_array_length(); * if (cnt > 0) * bpf_prog_array_copy_to_user(..., cnt); * so below kcalloc doesn't need extra cnt > 0 check. */ ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); if (!ids) return -ENOMEM; nospc = bpf_prog_array_copy_core(array, ids, cnt); err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); kfree(ids); if (err) return -EFAULT; if (nospc) return -ENOSPC; return 0; } void bpf_prog_array_delete_safe(struct bpf_prog_array *array, struct bpf_prog *old_prog) { struct bpf_prog_array_item *item; for (item = array->items; item->prog; item++) if (item->prog == old_prog) { WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); break; } } /** * bpf_prog_array_delete_safe_at() - Replaces the program at the given * index into the program array with * a dummy no-op program. * @array: a bpf_prog_array * @index: the index of the program to replace * * Skips over dummy programs, by not counting them, when calculating * the position of the program to replace. * * Return: * * 0 - Success * * -EINVAL - Invalid index value. Must be a non-negative integer. * * -ENOENT - Index out of range */ int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index) { return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog); } /** * bpf_prog_array_update_at() - Updates the program at the given index * into the program array. * @array: a bpf_prog_array * @index: the index of the program to update * @prog: the program to insert into the array * * Skips over dummy programs, by not counting them, when calculating * the position of the program to update. * * Return: * * 0 - Success * * -EINVAL - Invalid index value. Must be a non-negative integer. * * -ENOENT - Index out of range */ int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, struct bpf_prog *prog) { struct bpf_prog_array_item *item; if (unlikely(index < 0)) return -EINVAL; for (item = array->items; item->prog; item++) { if (item->prog == &dummy_bpf_prog.prog) continue; if (!index) { WRITE_ONCE(item->prog, prog); return 0; } index--; } return -ENOENT; } int bpf_prog_array_copy(struct bpf_prog_array *old_array, struct bpf_prog *exclude_prog, struct bpf_prog *include_prog, u64 bpf_cookie, struct bpf_prog_array **new_array) { int new_prog_cnt, carry_prog_cnt = 0; struct bpf_prog_array_item *existing, *new; struct bpf_prog_array *array; bool found_exclude = false; /* Figure out how many existing progs we need to carry over to * the new array. */ if (old_array) { existing = old_array->items; for (; existing->prog; existing++) { if (existing->prog == exclude_prog) { found_exclude = true; continue; } if (existing->prog != &dummy_bpf_prog.prog) carry_prog_cnt++; if (existing->prog == include_prog) return -EEXIST; } } if (exclude_prog && !found_exclude) return -ENOENT; /* How many progs (not NULL) will be in the new array? */ new_prog_cnt = carry_prog_cnt; if (include_prog) new_prog_cnt += 1; /* Do we have any prog (not NULL) in the new array? */ if (!new_prog_cnt) { *new_array = NULL; return 0; } /* +1 as the end of prog_array is marked with NULL */ array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); if (!array) return -ENOMEM; new = array->items; /* Fill in the new prog array */ if (carry_prog_cnt) { existing = old_array->items; for (; existing->prog; existing++) { if (existing->prog == exclude_prog || existing->prog == &dummy_bpf_prog.prog) continue; new->prog = existing->prog; new->bpf_cookie = existing->bpf_cookie; new++; } } if (include_prog) { new->prog = include_prog; new->bpf_cookie = bpf_cookie; new++; } new->prog = NULL; *new_array = array; return 0; } int bpf_prog_array_copy_info(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt, u32 *prog_cnt) { u32 cnt = 0; if (array) cnt = bpf_prog_array_length(array); *prog_cnt = cnt; /* return early if user requested only program count or nothing to copy */ if (!request_cnt || !cnt) return 0; /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC : 0; } void __bpf_free_used_maps(struct bpf_prog_aux *aux, struct bpf_map **used_maps, u32 len) { struct bpf_map *map; u32 i; for (i = 0; i < len; i++) { map = used_maps[i]; if (map->ops->map_poke_untrack) map->ops->map_poke_untrack(map, aux); bpf_map_put(map); } } static void bpf_free_used_maps(struct bpf_prog_aux *aux) { __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt); kfree(aux->used_maps); } void __bpf_free_used_btfs(struct bpf_prog_aux *aux, struct btf_mod_pair *used_btfs, u32 len) { #ifdef CONFIG_BPF_SYSCALL struct btf_mod_pair *btf_mod; u32 i; for (i = 0; i < len; i++) { btf_mod = &used_btfs[i]; if (btf_mod->module) module_put(btf_mod->module); btf_put(btf_mod->btf); } #endif } static void bpf_free_used_btfs(struct bpf_prog_aux *aux) { __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt); kfree(aux->used_btfs); } static void bpf_prog_free_deferred(struct work_struct *work) { struct bpf_prog_aux *aux; int i; aux = container_of(work, struct bpf_prog_aux, work); #ifdef CONFIG_BPF_SYSCALL bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab); #endif #ifdef CONFIG_CGROUP_BPF if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID) bpf_cgroup_atype_put(aux->cgroup_atype); #endif bpf_free_used_maps(aux); bpf_free_used_btfs(aux); if (bpf_prog_is_dev_bound(aux)) bpf_prog_dev_bound_destroy(aux->prog); #ifdef CONFIG_PERF_EVENTS if (aux->prog->has_callchain_buf) put_callchain_buffers(); #endif if (aux->dst_trampoline) bpf_trampoline_put(aux->dst_trampoline); for (i = 0; i < aux->func_cnt; i++) { /* We can just unlink the subprog poke descriptor table as * it was originally linked to the main program and is also * released along with it. */ aux->func[i]->aux->poke_tab = NULL; bpf_jit_free(aux->func[i]); } if (aux->func_cnt) { kfree(aux->func); bpf_prog_unlock_free(aux->prog); } else { bpf_jit_free(aux->prog); } } void bpf_prog_free(struct bpf_prog *fp) { struct bpf_prog_aux *aux = fp->aux; if (aux->dst_prog) bpf_prog_put(aux->dst_prog); INIT_WORK(&aux->work, bpf_prog_free_deferred); schedule_work(&aux->work); } EXPORT_SYMBOL_GPL(bpf_prog_free); /* RNG for unpriviledged user space with separated state from prandom_u32(). */ static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); void bpf_user_rnd_init_once(void) { prandom_init_once(&bpf_user_rnd_state); } BPF_CALL_0(bpf_user_rnd_u32) { /* Should someone ever have the rather unwise idea to use some * of the registers passed into this function, then note that * this function is called from native eBPF and classic-to-eBPF * transformations. Register assignments from both sides are * different, f.e. classic always sets fn(ctx, A, X) here. */ struct rnd_state *state; u32 res; state = &get_cpu_var(bpf_user_rnd_state); res = prandom_u32_state(state); put_cpu_var(bpf_user_rnd_state); return res; } BPF_CALL_0(bpf_get_raw_cpu_id) { return raw_smp_processor_id(); } /* Weak definitions of helper functions in case we don't have bpf syscall. */ const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; const struct bpf_func_proto bpf_map_update_elem_proto __weak; const struct bpf_func_proto bpf_map_delete_elem_proto __weak; const struct bpf_func_proto bpf_map_push_elem_proto __weak; const struct bpf_func_proto bpf_map_pop_elem_proto __weak; const struct bpf_func_proto bpf_map_peek_elem_proto __weak; const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak; const struct bpf_func_proto bpf_spin_lock_proto __weak; const struct bpf_func_proto bpf_spin_unlock_proto __weak; const struct bpf_func_proto bpf_jiffies64_proto __weak; const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak; const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; const struct bpf_func_proto bpf_get_current_comm_proto __weak; const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak; const struct bpf_func_proto bpf_get_local_storage_proto __weak; const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak; const struct bpf_func_proto bpf_snprintf_btf_proto __weak; const struct bpf_func_proto bpf_seq_printf_btf_proto __weak; const struct bpf_func_proto bpf_set_retval_proto __weak; const struct bpf_func_proto bpf_get_retval_proto __weak; const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) { return NULL; } const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void) { return NULL; } u64 __weak bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) { return -ENOTSUPP; } EXPORT_SYMBOL_GPL(bpf_event_output); /* Always built-in helper functions. */ const struct bpf_func_proto bpf_tail_call_proto = { .func = NULL, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; /* Stub for JITs that only support cBPF. eBPF programs are interpreted. * It is encouraged to implement bpf_int_jit_compile() instead, so that * eBPF and implicitly also cBPF can get JITed! */ struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) { return prog; } /* Stub for JITs that support eBPF. All cBPF code gets transformed into * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). */ void __weak bpf_jit_compile(struct bpf_prog *prog) { } bool __weak bpf_helper_changes_pkt_data(void *func) { return false; } /* Return TRUE if the JIT backend wants verifier to enable sub-register usage * analysis code and wants explicit zero extension inserted by verifier. * Otherwise, return FALSE. * * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if * you don't override this. JITs that don't want these extra insns can detect * them using insn_is_zext. */ bool __weak bpf_jit_needs_zext(void) { return false; } /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */ bool __weak bpf_jit_supports_subprog_tailcalls(void) { return false; } bool __weak bpf_jit_supports_kfunc_call(void) { return false; } bool __weak bpf_jit_supports_far_kfunc_call(void) { return false; } /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call * skb_copy_bits(), so provide a weak definition of it for NET-less config. */ int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) { return -EFAULT; } int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *addr1, void *addr2) { return -ENOTSUPP; } void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len) { return ERR_PTR(-ENOTSUPP); } int __weak bpf_arch_text_invalidate(void *dst, size_t len) { return -ENOTSUPP; } #ifdef CONFIG_BPF_SYSCALL static int __init bpf_global_ma_init(void) { int ret; ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false); bpf_global_ma_set = !ret; return ret; } late_initcall(bpf_global_ma_init); #endif DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key); EXPORT_SYMBOL(bpf_stats_enabled_key); /* All definitions of tracepoints related to BPF. */ #define CREATE_TRACE_POINTS #include <linux/bpf_trace.h> EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx); |