Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | // SPDX-License-Identifier: GPL-2.0-only /* * Load ELF vmlinux file for the kexec_file_load syscall. * * Copyright (C) 2021 Huawei Technologies Co, Ltd. * * Author: Liao Chang (liaochang1@huawei.com) * * Based on kexec-tools' kexec-elf-riscv.c, heavily modified * for kernel. */ #define pr_fmt(fmt) "kexec_image: " fmt #include <linux/elf.h> #include <linux/kexec.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/libfdt.h> #include <linux/types.h> #include <linux/memblock.h> #include <asm/setup.h> int arch_kimage_file_post_load_cleanup(struct kimage *image) { kvfree(image->arch.fdt); image->arch.fdt = NULL; vfree(image->elf_headers); image->elf_headers = NULL; image->elf_headers_sz = 0; return kexec_image_post_load_cleanup_default(image); } static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr, struct kexec_elf_info *elf_info, unsigned long old_pbase, unsigned long new_pbase) { int i; int ret = 0; size_t size; struct kexec_buf kbuf; const struct elf_phdr *phdr; kbuf.image = image; for (i = 0; i < ehdr->e_phnum; i++) { phdr = &elf_info->proghdrs[i]; if (phdr->p_type != PT_LOAD) continue; size = phdr->p_filesz; if (size > phdr->p_memsz) size = phdr->p_memsz; kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset; kbuf.bufsz = size; kbuf.buf_align = phdr->p_align; kbuf.mem = phdr->p_paddr - old_pbase + new_pbase; kbuf.memsz = phdr->p_memsz; kbuf.top_down = false; ret = kexec_add_buffer(&kbuf); if (ret) break; } return ret; } /* * Go through the available phsyical memory regions and find one that hold * an image of the specified size. */ static int elf_find_pbase(struct kimage *image, unsigned long kernel_len, struct elfhdr *ehdr, struct kexec_elf_info *elf_info, unsigned long *old_pbase, unsigned long *new_pbase) { int i; int ret; struct kexec_buf kbuf; const struct elf_phdr *phdr; unsigned long lowest_paddr = ULONG_MAX; unsigned long lowest_vaddr = ULONG_MAX; for (i = 0; i < ehdr->e_phnum; i++) { phdr = &elf_info->proghdrs[i]; if (phdr->p_type != PT_LOAD) continue; if (lowest_paddr > phdr->p_paddr) lowest_paddr = phdr->p_paddr; if (lowest_vaddr > phdr->p_vaddr) lowest_vaddr = phdr->p_vaddr; } kbuf.image = image; kbuf.buf_min = lowest_paddr; kbuf.buf_max = ULONG_MAX; kbuf.buf_align = PAGE_SIZE; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE); kbuf.top_down = false; ret = arch_kexec_locate_mem_hole(&kbuf); if (!ret) { *old_pbase = lowest_paddr; *new_pbase = kbuf.mem; image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem; } return ret; } static int get_nr_ram_ranges_callback(struct resource *res, void *arg) { unsigned int *nr_ranges = arg; (*nr_ranges)++; return 0; } static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg) { struct crash_mem *cmem = arg; cmem->ranges[cmem->nr_ranges].start = res->start; cmem->ranges[cmem->nr_ranges].end = res->end; cmem->nr_ranges++; return 0; } static int prepare_elf_headers(void **addr, unsigned long *sz) { struct crash_mem *cmem; unsigned int nr_ranges; int ret; nr_ranges = 1; /* For exclusion of crashkernel region */ walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback); cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL); if (!cmem) return -ENOMEM; cmem->max_nr_ranges = nr_ranges; cmem->nr_ranges = 0; ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback); if (ret) goto out; /* Exclude crashkernel region */ ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end); if (!ret) ret = crash_prepare_elf64_headers(cmem, true, addr, sz); out: kfree(cmem); return ret; } static char *setup_kdump_cmdline(struct kimage *image, char *cmdline, unsigned long cmdline_len) { int elfcorehdr_strlen; char *cmdline_ptr; cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL); if (!cmdline_ptr) return NULL; elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ", image->elf_load_addr); if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) { pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n"); kfree(cmdline_ptr); return NULL; } memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len); /* Ensure it's nul terminated */ cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0'; return cmdline_ptr; } static void *elf_kexec_load(struct kimage *image, char *kernel_buf, unsigned long kernel_len, char *initrd, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len) { int ret; unsigned long old_kernel_pbase = ULONG_MAX; unsigned long new_kernel_pbase = 0UL; unsigned long initrd_pbase = 0UL; unsigned long headers_sz; unsigned long kernel_start; void *fdt, *headers; struct elfhdr ehdr; struct kexec_buf kbuf; struct kexec_elf_info elf_info; char *modified_cmdline = NULL; ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info); if (ret) return ERR_PTR(ret); ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info, &old_kernel_pbase, &new_kernel_pbase); if (ret) goto out; kernel_start = image->start; pr_notice("The entry point of kernel at 0x%lx\n", image->start); /* Add the kernel binary to the image */ ret = riscv_kexec_elf_load(image, &ehdr, &elf_info, old_kernel_pbase, new_kernel_pbase); if (ret) goto out; kbuf.image = image; kbuf.buf_min = new_kernel_pbase + kernel_len; kbuf.buf_max = ULONG_MAX; /* Add elfcorehdr */ if (image->type == KEXEC_TYPE_CRASH) { ret = prepare_elf_headers(&headers, &headers_sz); if (ret) { pr_err("Preparing elf core header failed\n"); goto out; } kbuf.buffer = headers; kbuf.bufsz = headers_sz; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; kbuf.memsz = headers_sz; kbuf.buf_align = ELF_CORE_HEADER_ALIGN; kbuf.top_down = true; ret = kexec_add_buffer(&kbuf); if (ret) { vfree(headers); goto out; } image->elf_headers = headers; image->elf_load_addr = kbuf.mem; image->elf_headers_sz = headers_sz; pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n", image->elf_load_addr, kbuf.bufsz, kbuf.memsz); /* Setup cmdline for kdump kernel case */ modified_cmdline = setup_kdump_cmdline(image, cmdline, cmdline_len); if (!modified_cmdline) { pr_err("Setting up cmdline for kdump kernel failed\n"); ret = -EINVAL; goto out; } cmdline = modified_cmdline; } #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY /* Add purgatory to the image */ kbuf.top_down = true; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_load_purgatory(image, &kbuf); if (ret) { pr_err("Error loading purgatory ret=%d\n", ret); goto out; } ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry", &kernel_start, sizeof(kernel_start), 0); if (ret) pr_err("Error update purgatory ret=%d\n", ret); #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ /* Add the initrd to the image */ if (initrd != NULL) { kbuf.buffer = initrd; kbuf.bufsz = kbuf.memsz = initrd_len; kbuf.buf_align = PAGE_SIZE; kbuf.top_down = true; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_add_buffer(&kbuf); if (ret) goto out; initrd_pbase = kbuf.mem; pr_notice("Loaded initrd at 0x%lx\n", initrd_pbase); } /* Add the DTB to the image */ fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase, initrd_len, cmdline, 0); if (!fdt) { pr_err("Error setting up the new device tree.\n"); ret = -EINVAL; goto out; } fdt_pack(fdt); kbuf.buffer = fdt; kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt); kbuf.buf_align = PAGE_SIZE; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; kbuf.top_down = true; ret = kexec_add_buffer(&kbuf); if (ret) { pr_err("Error add DTB kbuf ret=%d\n", ret); goto out_free_fdt; } /* Cache the fdt buffer address for memory cleanup */ image->arch.fdt = fdt; pr_notice("Loaded device tree at 0x%lx\n", kbuf.mem); goto out; out_free_fdt: kvfree(fdt); out: kfree(modified_cmdline); kexec_free_elf_info(&elf_info); return ret ? ERR_PTR(ret) : NULL; } #define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1)) #define RISCV_IMM_BITS 12 #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS) #define RISCV_CONST_HIGH_PART(x) \ (((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1)) #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x)) #define ENCODE_ITYPE_IMM(x) \ (RV_X(x, 0, 12) << 20) #define ENCODE_BTYPE_IMM(x) \ ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \ (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31)) #define ENCODE_UTYPE_IMM(x) \ (RV_X(x, 12, 20) << 12) #define ENCODE_JTYPE_IMM(x) \ ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \ (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31)) #define ENCODE_CBTYPE_IMM(x) \ ((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \ (RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12)) #define ENCODE_CJTYPE_IMM(x) \ ((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \ (RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \ (RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12)) #define ENCODE_UJTYPE_IMM(x) \ (ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \ (ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32)) #define ENCODE_UITYPE_IMM(x) \ (ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32)) #define CLEAN_IMM(type, x) \ ((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x)) int arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, const Elf_Shdr *relsec, const Elf_Shdr *symtab) { const char *strtab, *name, *shstrtab; const Elf_Shdr *sechdrs; Elf64_Rela *relas; int i, r_type; /* String & section header string table */ sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset; shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; relas = (void *)pi->ehdr + relsec->sh_offset; for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) { const Elf_Sym *sym; /* symbol to relocate */ unsigned long addr; /* final location after relocation */ unsigned long val; /* relocated symbol value */ unsigned long sec_base; /* relocated symbol value */ void *loc; /* tmp location to modify */ sym = (void *)pi->ehdr + symtab->sh_offset; sym += ELF64_R_SYM(relas[i].r_info); if (sym->st_name) name = strtab + sym->st_name; else name = shstrtab + sechdrs[sym->st_shndx].sh_name; loc = pi->purgatory_buf; loc += section->sh_offset; loc += relas[i].r_offset; if (sym->st_shndx == SHN_ABS) sec_base = 0; else if (sym->st_shndx >= pi->ehdr->e_shnum) { pr_err("Invalid section %d for symbol %s\n", sym->st_shndx, name); return -ENOEXEC; } else sec_base = pi->sechdrs[sym->st_shndx].sh_addr; val = sym->st_value; val += sec_base; val += relas[i].r_addend; addr = section->sh_addr + relas[i].r_offset; r_type = ELF64_R_TYPE(relas[i].r_info); switch (r_type) { case R_RISCV_BRANCH: *(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) | ENCODE_BTYPE_IMM(val - addr); break; case R_RISCV_JAL: *(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) | ENCODE_JTYPE_IMM(val - addr); break; /* * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I * sym is expected to be next to R_RISCV_PCREL_HI20 * in purgatory relsec. Handle it like R_RISCV_CALL * sym, instead of searching the whole relsec. */ case R_RISCV_PCREL_HI20: case R_RISCV_CALL_PLT: case R_RISCV_CALL: *(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) | ENCODE_UJTYPE_IMM(val - addr); break; case R_RISCV_RVC_BRANCH: *(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) | ENCODE_CBTYPE_IMM(val - addr); break; case R_RISCV_RVC_JUMP: *(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) | ENCODE_CJTYPE_IMM(val - addr); break; case R_RISCV_ADD32: *(u32 *)loc += val; break; case R_RISCV_SUB32: *(u32 *)loc -= val; break; /* It has been applied by R_RISCV_PCREL_HI20 sym */ case R_RISCV_PCREL_LO12_I: case R_RISCV_ALIGN: case R_RISCV_RELAX: break; default: pr_err("Unknown rela relocation: %d\n", r_type); return -ENOEXEC; } } return 0; } const struct kexec_file_ops elf_kexec_ops = { .probe = kexec_elf_probe, .load = elf_kexec_load, }; |