Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
// SPDX-License-Identifier: GPL-2.0
/* Marvell PTP driver
 *
 * Copyright (C) 2020 Marvell.
 *
 */

#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>

#include "ptp.h"
#include "mbox.h"
#include "rvu.h"

#define DRV_NAME				"Marvell PTP Driver"

#define PCI_DEVID_OCTEONTX2_PTP			0xA00C
#define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP		0xB100
#define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP		0xB200
#define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP		0xB300
#define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP	0xB400
#define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP		0xB500
#define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP	0xB600
#define PCI_DEVID_OCTEONTX2_RST			0xA085
#define PCI_DEVID_CN10K_PTP			0xA09E
#define PCI_SUBSYS_DEVID_CN10K_A_PTP		0xB900
#define PCI_SUBSYS_DEVID_CNF10K_A_PTP		0xBA00
#define PCI_SUBSYS_DEVID_CNF10K_B_PTP		0xBC00

#define PCI_PTP_BAR_NO				0

#define PTP_CLOCK_CFG				0xF00ULL
#define PTP_CLOCK_CFG_PTP_EN			BIT_ULL(0)
#define PTP_CLOCK_CFG_EXT_CLK_EN		BIT_ULL(1)
#define PTP_CLOCK_CFG_EXT_CLK_IN_MASK		GENMASK_ULL(7, 2)
#define PTP_CLOCK_CFG_TSTMP_EDGE		BIT_ULL(9)
#define PTP_CLOCK_CFG_TSTMP_EN			BIT_ULL(8)
#define PTP_CLOCK_CFG_TSTMP_IN_MASK		GENMASK_ULL(15, 10)
#define PTP_CLOCK_CFG_PPS_EN			BIT_ULL(30)
#define PTP_CLOCK_CFG_PPS_INV			BIT_ULL(31)

#define PTP_PPS_HI_INCR				0xF60ULL
#define PTP_PPS_LO_INCR				0xF68ULL
#define PTP_PPS_THRESH_HI			0xF58ULL

#define PTP_CLOCK_LO				0xF08ULL
#define PTP_CLOCK_HI				0xF10ULL
#define PTP_CLOCK_COMP				0xF18ULL
#define PTP_TIMESTAMP				0xF20ULL
#define PTP_CLOCK_SEC				0xFD0ULL
#define PTP_SEC_ROLLOVER			0xFD8ULL

#define CYCLE_MULT				1000

static struct ptp *first_ptp_block;
static const struct pci_device_id ptp_id_table[];

static bool is_ptp_dev_cnf10kb(struct ptp *ptp)
{
	return (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_B_PTP) ? true : false;
}

static bool is_ptp_dev_cn10k(struct ptp *ptp)
{
	return (ptp->pdev->device == PCI_DEVID_CN10K_PTP) ? true : false;
}

static bool cn10k_ptp_errata(struct ptp *ptp)
{
	if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP ||
	    ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP)
		return true;
	return false;
}

static bool is_ptp_tsfmt_sec_nsec(struct ptp *ptp)
{
	if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP ||
	    ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP)
		return true;
	return false;
}

static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer)
{
	struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer);
	ktime_t curr_ts = ktime_get();
	ktime_t delta_ns, period_ns;
	u64 ptp_clock_hi;

	/* calculate the elapsed time since last restart */
	delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts));

	/* if the ptp clock value has crossed 0.5 seconds,
	 * its too late to update pps threshold value, so
	 * update threshold after 1 second.
	 */
	ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
	if (ptp_clock_hi > 500000000) {
		period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi));
	} else {
		writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI);
		period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns));
	}

	hrtimer_forward_now(hrtimer, period_ns);
	ptp->last_ts = curr_ts;

	return HRTIMER_RESTART;
}

static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns)
{
	ktime_t period_ns;

	period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns));
	hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL);
	ptp->last_ts = ktime_get();
}

static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp)
{
	u64 sec, sec1, nsec;
	unsigned long flags;

	spin_lock_irqsave(&ptp->ptp_lock, flags);
	sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
	nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
	sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
	/* check nsec rollover */
	if (sec1 > sec) {
		nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
		sec = sec1;
	}
	spin_unlock_irqrestore(&ptp->ptp_lock, flags);

	return sec * NSEC_PER_SEC + nsec;
}

static u64 read_ptp_tstmp_nsec(struct ptp *ptp)
{
	return readq(ptp->reg_base + PTP_CLOCK_HI);
}

static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq)
{
	u64 comp, adj = 0, cycles_per_sec, ns_drift = 0;
	u32 ptp_clock_nsec, cycle_time;
	int cycle;

	/* Errata:
	 * Issue #1: At the time of 1 sec rollover of the nano-second counter,
	 * the nano-second counter is set to 0. However, it should be set to
	 * (existing counter_value - 10^9).
	 *
	 * Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF.
	 * It should roll over at 0x3B9A_CA00.
	 */

	/* calculate ptp_clock_comp value */
	comp = ((u64)1000000000ULL << 32) / ptp_clock_freq;
	/* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */
	cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq;
	/* cycles per sec */
	cycles_per_sec = ptp_clock_freq;

	/* check whether ptp nanosecond counter rolls over early */
	cycle = cycles_per_sec - 1;
	ptp_clock_nsec = (cycle * comp) >> 32;
	while (ptp_clock_nsec < NSEC_PER_SEC) {
		if (ptp_clock_nsec == 0x3B9AC9FF)
			goto calc_adj_comp;
		cycle++;
		ptp_clock_nsec = (cycle * comp) >> 32;
	}
	/* compute nanoseconds lost per second when nsec counter rolls over */
	ns_drift = ptp_clock_nsec - NSEC_PER_SEC;
	/* calculate ptp_clock_comp adjustment */
	if (ns_drift > 0) {
		adj = comp * ns_drift;
		adj = adj / 1000000000ULL;
	}
	/* speed up the ptp clock to account for nanoseconds lost */
	comp += adj;
	return comp;

calc_adj_comp:
	/* slow down the ptp clock to not rollover early */
	adj = comp * cycle_time;
	adj = adj / 1000000000ULL;
	adj = adj / CYCLE_MULT;
	comp -= adj;

	return comp;
}

struct ptp *ptp_get(void)
{
	struct ptp *ptp = first_ptp_block;

	/* Check PTP block is present in hardware */
	if (!pci_dev_present(ptp_id_table))
		return ERR_PTR(-ENODEV);
	/* Check driver is bound to PTP block */
	if (!ptp)
		ptp = ERR_PTR(-EPROBE_DEFER);
	else if (!IS_ERR(ptp))
		pci_dev_get(ptp->pdev);

	return ptp;
}

void ptp_put(struct ptp *ptp)
{
	if (!ptp)
		return;

	pci_dev_put(ptp->pdev);
}

static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
{
	bool neg_adj = false;
	u32 freq, freq_adj;
	u64 comp, adj;
	s64 ppb;

	if (scaled_ppm < 0) {
		neg_adj = true;
		scaled_ppm = -scaled_ppm;
	}

	/* The hardware adds the clock compensation value to the PTP clock
	 * on every coprocessor clock cycle. Typical convention is that it
	 * represent number of nanosecond betwen each cycle. In this
	 * convention compensation value is in 64 bit fixed-point
	 * representation where upper 32 bits are number of nanoseconds
	 * and lower is fractions of nanosecond.
	 * The scaled_ppm represent the ratio in "parts per million" by which
	 * the compensation value should be corrected.
	 * To calculate new compenstation value we use 64bit fixed point
	 * arithmetic on following formula
	 * comp = tbase + tbase * scaled_ppm / (1M * 2^16)
	 * where tbase is the basic compensation value calculated
	 * initialy in the probe function.
	 */
	/* convert scaled_ppm to ppb */
	ppb = 1 + scaled_ppm;
	ppb *= 125;
	ppb >>= 13;

	if (cn10k_ptp_errata(ptp)) {
		/* calculate the new frequency based on ppb */
		freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL;
		freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj;
		comp = ptp_calc_adjusted_comp(freq);
	} else {
		comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
		adj = comp * ppb;
		adj = div_u64(adj, 1000000000ull);
		comp = neg_adj ? comp - adj : comp + adj;
	}
	writeq(comp, ptp->reg_base + PTP_CLOCK_COMP);

	return 0;
}

static int ptp_get_clock(struct ptp *ptp, u64 *clk)
{
	/* Return the current PTP clock */
	*clk = ptp->read_ptp_tstmp(ptp);

	return 0;
}

void ptp_start(struct ptp *ptp, u64 sclk, u32 ext_clk_freq, u32 extts)
{
	struct pci_dev *pdev;
	u64 clock_comp;
	u64 clock_cfg;

	if (!ptp)
		return;

	pdev = ptp->pdev;

	if (!sclk) {
		dev_err(&pdev->dev, "PTP input clock cannot be zero\n");
		return;
	}

	/* sclk is in MHz */
	ptp->clock_rate = sclk * 1000000;

	/* Program the seconds rollover value to 1 second */
	if (is_ptp_dev_cnf10kb(ptp))
		writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER);

	/* Enable PTP clock */
	clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);

	if (ext_clk_freq) {
		ptp->clock_rate = ext_clk_freq;
		/* Set GPIO as PTP clock source */
		clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK;
		clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN;
	}

	if (extts) {
		clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE;
		/* Set GPIO as timestamping source */
		clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK;
		clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN;
	}

	clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
	clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV;
	writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);

	/* Set 50% duty cycle for 1Hz output */
	writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_HI_INCR);
	writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_LO_INCR);
	if (cn10k_ptp_errata(ptp)) {
		/* The ptp_clock_hi rollsover to zero once clock cycle before it
		 * reaches one second boundary. so, program the pps_lo_incr in
		 * such a way that the pps threshold value comparison at one
		 * second boundary will succeed and pps edge changes. After each
		 * one second boundary, the hrtimer handler will be invoked and
		 * reprograms the pps threshold value.
		 */
		ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate;
		writeq((0x1dcd6500ULL - ptp->clock_period) << 32,
		       ptp->reg_base + PTP_PPS_LO_INCR);
	}

	if (cn10k_ptp_errata(ptp))
		clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate);
	else
		clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate;

	/* Initial compensation value to start the nanosecs counter */
	writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP);
}

static int ptp_get_tstmp(struct ptp *ptp, u64 *clk)
{
	u64 timestamp;

	if (is_ptp_dev_cn10k(ptp)) {
		timestamp = readq(ptp->reg_base + PTP_TIMESTAMP);
		*clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF);
	} else {
		*clk = readq(ptp->reg_base + PTP_TIMESTAMP);
	}

	return 0;
}

static int ptp_set_thresh(struct ptp *ptp, u64 thresh)
{
	if (!cn10k_ptp_errata(ptp))
		writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI);

	return 0;
}

static int ptp_extts_on(struct ptp *ptp, int on)
{
	u64 ptp_clock_hi;

	if (cn10k_ptp_errata(ptp)) {
		if (on) {
			ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
			ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi);
		} else {
			if (hrtimer_active(&ptp->hrtimer))
				hrtimer_cancel(&ptp->hrtimer);
		}
	}

	return 0;
}

static int ptp_probe(struct pci_dev *pdev,
		     const struct pci_device_id *ent)
{
	struct ptp *ptp;
	int err;

	ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
	if (!ptp) {
		err = -ENOMEM;
		goto error;
	}

	ptp->pdev = pdev;

	err = pcim_enable_device(pdev);
	if (err)
		goto error_free;

	err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
	if (err)
		goto error_free;

	ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];

	pci_set_drvdata(pdev, ptp);
	if (!first_ptp_block)
		first_ptp_block = ptp;

	spin_lock_init(&ptp->ptp_lock);
	if (is_ptp_tsfmt_sec_nsec(ptp))
		ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec;
	else
		ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec;

	if (cn10k_ptp_errata(ptp)) {
		hrtimer_init(&ptp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		ptp->hrtimer.function = ptp_reset_thresh;
	}

	return 0;

error_free:
	kfree(ptp);

error:
	/* For `ptp_get()` we need to differentiate between the case
	 * when the core has not tried to probe this device and the case when
	 * the probe failed.  In the later case we keep the error in
	 * `dev->driver_data`.
	 */
	pci_set_drvdata(pdev, ERR_PTR(err));
	if (!first_ptp_block)
		first_ptp_block = ERR_PTR(err);

	return err;
}

static void ptp_remove(struct pci_dev *pdev)
{
	struct ptp *ptp = pci_get_drvdata(pdev);
	u64 clock_cfg;

	if (IS_ERR_OR_NULL(ptp))
		return;

	if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer))
		hrtimer_cancel(&ptp->hrtimer);

	/* Disable PTP clock */
	clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
	clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
	writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
	kfree(ptp);
}

static const struct pci_device_id ptp_id_table[] = {
	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
			 PCI_VENDOR_ID_CAVIUM,
			 PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) },
	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
			 PCI_VENDOR_ID_CAVIUM,
			 PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) },
	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
			 PCI_VENDOR_ID_CAVIUM,
			 PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) },
	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
			 PCI_VENDOR_ID_CAVIUM,
			 PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) },
	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
			 PCI_VENDOR_ID_CAVIUM,
			 PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) },
	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
			 PCI_VENDOR_ID_CAVIUM,
			 PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) },
	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) },
	{ 0, }
};

struct pci_driver ptp_driver = {
	.name = DRV_NAME,
	.id_table = ptp_id_table,
	.probe = ptp_probe,
	.remove = ptp_remove,
};

int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req,
			    struct ptp_rsp *rsp)
{
	int err = 0;

	/* This function is the PTP mailbox handler invoked when
	 * called by AF consumers/netdev drivers via mailbox mechanism.
	 * It is used by netdev driver to get the PTP clock and to set
	 * frequency adjustments. Since mailbox can be called without
	 * notion of whether the driver is bound to ptp device below
	 * validation is needed as first step.
	 */
	if (!rvu->ptp)
		return -ENODEV;

	switch (req->op) {
	case PTP_OP_ADJFINE:
		err = ptp_adjfine(rvu->ptp, req->scaled_ppm);
		break;
	case PTP_OP_GET_CLOCK:
		err = ptp_get_clock(rvu->ptp, &rsp->clk);
		break;
	case PTP_OP_GET_TSTMP:
		err = ptp_get_tstmp(rvu->ptp, &rsp->clk);
		break;
	case PTP_OP_SET_THRESH:
		err = ptp_set_thresh(rvu->ptp, req->thresh);
		break;
	case PTP_OP_EXTTS_ON:
		err = ptp_extts_on(rvu->ptp, req->extts_on);
		break;
	default:
		err = -EINVAL;
		break;
	}

	return err;
}