Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | // SPDX-License-Identifier: GPL-2.0 /* Marvell PTP driver * * Copyright (C) 2020 Marvell. * */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/hrtimer.h> #include <linux/ktime.h> #include "ptp.h" #include "mbox.h" #include "rvu.h" #define DRV_NAME "Marvell PTP Driver" #define PCI_DEVID_OCTEONTX2_PTP 0xA00C #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100 #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200 #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300 #define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400 #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500 #define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600 #define PCI_DEVID_OCTEONTX2_RST 0xA085 #define PCI_DEVID_CN10K_PTP 0xA09E #define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900 #define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00 #define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00 #define PCI_PTP_BAR_NO 0 #define PTP_CLOCK_CFG 0xF00ULL #define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0) #define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1) #define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2) #define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9) #define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8) #define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10) #define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30) #define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31) #define PTP_PPS_HI_INCR 0xF60ULL #define PTP_PPS_LO_INCR 0xF68ULL #define PTP_PPS_THRESH_HI 0xF58ULL #define PTP_CLOCK_LO 0xF08ULL #define PTP_CLOCK_HI 0xF10ULL #define PTP_CLOCK_COMP 0xF18ULL #define PTP_TIMESTAMP 0xF20ULL #define PTP_CLOCK_SEC 0xFD0ULL #define PTP_SEC_ROLLOVER 0xFD8ULL #define CYCLE_MULT 1000 static struct ptp *first_ptp_block; static const struct pci_device_id ptp_id_table[]; static bool is_ptp_dev_cnf10kb(struct ptp *ptp) { return (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_B_PTP) ? true : false; } static bool is_ptp_dev_cn10k(struct ptp *ptp) { return (ptp->pdev->device == PCI_DEVID_CN10K_PTP) ? true : false; } static bool cn10k_ptp_errata(struct ptp *ptp) { if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) return true; return false; } static bool is_ptp_tsfmt_sec_nsec(struct ptp *ptp) { if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) return true; return false; } static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer) { struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer); ktime_t curr_ts = ktime_get(); ktime_t delta_ns, period_ns; u64 ptp_clock_hi; /* calculate the elapsed time since last restart */ delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts)); /* if the ptp clock value has crossed 0.5 seconds, * its too late to update pps threshold value, so * update threshold after 1 second. */ ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); if (ptp_clock_hi > 500000000) { period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi)); } else { writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI); period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns)); } hrtimer_forward_now(hrtimer, period_ns); ptp->last_ts = curr_ts; return HRTIMER_RESTART; } static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns) { ktime_t period_ns; period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns)); hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL); ptp->last_ts = ktime_get(); } static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp) { u64 sec, sec1, nsec; unsigned long flags; spin_lock_irqsave(&ptp->ptp_lock, flags); sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; nsec = readq(ptp->reg_base + PTP_CLOCK_HI); sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; /* check nsec rollover */ if (sec1 > sec) { nsec = readq(ptp->reg_base + PTP_CLOCK_HI); sec = sec1; } spin_unlock_irqrestore(&ptp->ptp_lock, flags); return sec * NSEC_PER_SEC + nsec; } static u64 read_ptp_tstmp_nsec(struct ptp *ptp) { return readq(ptp->reg_base + PTP_CLOCK_HI); } static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq) { u64 comp, adj = 0, cycles_per_sec, ns_drift = 0; u32 ptp_clock_nsec, cycle_time; int cycle; /* Errata: * Issue #1: At the time of 1 sec rollover of the nano-second counter, * the nano-second counter is set to 0. However, it should be set to * (existing counter_value - 10^9). * * Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF. * It should roll over at 0x3B9A_CA00. */ /* calculate ptp_clock_comp value */ comp = ((u64)1000000000ULL << 32) / ptp_clock_freq; /* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */ cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq; /* cycles per sec */ cycles_per_sec = ptp_clock_freq; /* check whether ptp nanosecond counter rolls over early */ cycle = cycles_per_sec - 1; ptp_clock_nsec = (cycle * comp) >> 32; while (ptp_clock_nsec < NSEC_PER_SEC) { if (ptp_clock_nsec == 0x3B9AC9FF) goto calc_adj_comp; cycle++; ptp_clock_nsec = (cycle * comp) >> 32; } /* compute nanoseconds lost per second when nsec counter rolls over */ ns_drift = ptp_clock_nsec - NSEC_PER_SEC; /* calculate ptp_clock_comp adjustment */ if (ns_drift > 0) { adj = comp * ns_drift; adj = adj / 1000000000ULL; } /* speed up the ptp clock to account for nanoseconds lost */ comp += adj; return comp; calc_adj_comp: /* slow down the ptp clock to not rollover early */ adj = comp * cycle_time; adj = adj / 1000000000ULL; adj = adj / CYCLE_MULT; comp -= adj; return comp; } struct ptp *ptp_get(void) { struct ptp *ptp = first_ptp_block; /* Check PTP block is present in hardware */ if (!pci_dev_present(ptp_id_table)) return ERR_PTR(-ENODEV); /* Check driver is bound to PTP block */ if (!ptp) ptp = ERR_PTR(-EPROBE_DEFER); else if (!IS_ERR(ptp)) pci_dev_get(ptp->pdev); return ptp; } void ptp_put(struct ptp *ptp) { if (!ptp) return; pci_dev_put(ptp->pdev); } static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) { bool neg_adj = false; u32 freq, freq_adj; u64 comp, adj; s64 ppb; if (scaled_ppm < 0) { neg_adj = true; scaled_ppm = -scaled_ppm; } /* The hardware adds the clock compensation value to the PTP clock * on every coprocessor clock cycle. Typical convention is that it * represent number of nanosecond betwen each cycle. In this * convention compensation value is in 64 bit fixed-point * representation where upper 32 bits are number of nanoseconds * and lower is fractions of nanosecond. * The scaled_ppm represent the ratio in "parts per million" by which * the compensation value should be corrected. * To calculate new compenstation value we use 64bit fixed point * arithmetic on following formula * comp = tbase + tbase * scaled_ppm / (1M * 2^16) * where tbase is the basic compensation value calculated * initialy in the probe function. */ /* convert scaled_ppm to ppb */ ppb = 1 + scaled_ppm; ppb *= 125; ppb >>= 13; if (cn10k_ptp_errata(ptp)) { /* calculate the new frequency based on ppb */ freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL; freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj; comp = ptp_calc_adjusted_comp(freq); } else { comp = ((u64)1000000000ull << 32) / ptp->clock_rate; adj = comp * ppb; adj = div_u64(adj, 1000000000ull); comp = neg_adj ? comp - adj : comp + adj; } writeq(comp, ptp->reg_base + PTP_CLOCK_COMP); return 0; } static int ptp_get_clock(struct ptp *ptp, u64 *clk) { /* Return the current PTP clock */ *clk = ptp->read_ptp_tstmp(ptp); return 0; } void ptp_start(struct ptp *ptp, u64 sclk, u32 ext_clk_freq, u32 extts) { struct pci_dev *pdev; u64 clock_comp; u64 clock_cfg; if (!ptp) return; pdev = ptp->pdev; if (!sclk) { dev_err(&pdev->dev, "PTP input clock cannot be zero\n"); return; } /* sclk is in MHz */ ptp->clock_rate = sclk * 1000000; /* Program the seconds rollover value to 1 second */ if (is_ptp_dev_cnf10kb(ptp)) writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER); /* Enable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); if (ext_clk_freq) { ptp->clock_rate = ext_clk_freq; /* Set GPIO as PTP clock source */ clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK; clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN; } if (extts) { clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE; /* Set GPIO as timestamping source */ clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK; clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN; } clock_cfg |= PTP_CLOCK_CFG_PTP_EN; clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); /* Set 50% duty cycle for 1Hz output */ writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_HI_INCR); writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_LO_INCR); if (cn10k_ptp_errata(ptp)) { /* The ptp_clock_hi rollsover to zero once clock cycle before it * reaches one second boundary. so, program the pps_lo_incr in * such a way that the pps threshold value comparison at one * second boundary will succeed and pps edge changes. After each * one second boundary, the hrtimer handler will be invoked and * reprograms the pps threshold value. */ ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate; writeq((0x1dcd6500ULL - ptp->clock_period) << 32, ptp->reg_base + PTP_PPS_LO_INCR); } if (cn10k_ptp_errata(ptp)) clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate); else clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; /* Initial compensation value to start the nanosecs counter */ writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); } static int ptp_get_tstmp(struct ptp *ptp, u64 *clk) { u64 timestamp; if (is_ptp_dev_cn10k(ptp)) { timestamp = readq(ptp->reg_base + PTP_TIMESTAMP); *clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF); } else { *clk = readq(ptp->reg_base + PTP_TIMESTAMP); } return 0; } static int ptp_set_thresh(struct ptp *ptp, u64 thresh) { if (!cn10k_ptp_errata(ptp)) writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI); return 0; } static int ptp_extts_on(struct ptp *ptp, int on) { u64 ptp_clock_hi; if (cn10k_ptp_errata(ptp)) { if (on) { ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi); } else { if (hrtimer_active(&ptp->hrtimer)) hrtimer_cancel(&ptp->hrtimer); } } return 0; } static int ptp_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct ptp *ptp; int err; ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); if (!ptp) { err = -ENOMEM; goto error; } ptp->pdev = pdev; err = pcim_enable_device(pdev); if (err) goto error_free; err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev)); if (err) goto error_free; ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; pci_set_drvdata(pdev, ptp); if (!first_ptp_block) first_ptp_block = ptp; spin_lock_init(&ptp->ptp_lock); if (is_ptp_tsfmt_sec_nsec(ptp)) ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec; else ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec; if (cn10k_ptp_errata(ptp)) { hrtimer_init(&ptp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ptp->hrtimer.function = ptp_reset_thresh; } return 0; error_free: kfree(ptp); error: /* For `ptp_get()` we need to differentiate between the case * when the core has not tried to probe this device and the case when * the probe failed. In the later case we keep the error in * `dev->driver_data`. */ pci_set_drvdata(pdev, ERR_PTR(err)); if (!first_ptp_block) first_ptp_block = ERR_PTR(err); return err; } static void ptp_remove(struct pci_dev *pdev) { struct ptp *ptp = pci_get_drvdata(pdev); u64 clock_cfg; if (IS_ERR_OR_NULL(ptp)) return; if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer)) hrtimer_cancel(&ptp->hrtimer); /* Disable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); kfree(ptp); } static const struct pci_device_id ptp_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) }, { 0, } }; struct pci_driver ptp_driver = { .name = DRV_NAME, .id_table = ptp_id_table, .probe = ptp_probe, .remove = ptp_remove, }; int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, struct ptp_rsp *rsp) { int err = 0; /* This function is the PTP mailbox handler invoked when * called by AF consumers/netdev drivers via mailbox mechanism. * It is used by netdev driver to get the PTP clock and to set * frequency adjustments. Since mailbox can be called without * notion of whether the driver is bound to ptp device below * validation is needed as first step. */ if (!rvu->ptp) return -ENODEV; switch (req->op) { case PTP_OP_ADJFINE: err = ptp_adjfine(rvu->ptp, req->scaled_ppm); break; case PTP_OP_GET_CLOCK: err = ptp_get_clock(rvu->ptp, &rsp->clk); break; case PTP_OP_GET_TSTMP: err = ptp_get_tstmp(rvu->ptp, &rsp->clk); break; case PTP_OP_SET_THRESH: err = ptp_set_thresh(rvu->ptp, req->thresh); break; case PTP_OP_EXTTS_ON: err = ptp_extts_on(rvu->ptp, req->extts_on); break; default: err = -EINVAL; break; } return err; } |