Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | #ifdef CONFIG_SMP #include "sched-pelt.h" int __update_load_avg_blocked_se(u64 now, struct sched_entity *se); int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se); int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq); int update_rt_rq_load_avg(u64 now, struct rq *rq, int running); int update_dl_rq_load_avg(u64 now, struct rq *rq, int running); #ifdef CONFIG_SCHED_THERMAL_PRESSURE int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity); static inline u64 thermal_load_avg(struct rq *rq) { return READ_ONCE(rq->avg_thermal.load_avg); } #else static inline int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) { return 0; } static inline u64 thermal_load_avg(struct rq *rq) { return 0; } #endif #ifdef CONFIG_HAVE_SCHED_AVG_IRQ int update_irq_load_avg(struct rq *rq, u64 running); #else static inline int update_irq_load_avg(struct rq *rq, u64 running) { return 0; } #endif #define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024) static inline u32 get_pelt_divider(struct sched_avg *avg) { return PELT_MIN_DIVIDER + avg->period_contrib; } static inline void cfs_se_util_change(struct sched_avg *avg) { unsigned int enqueued; if (!sched_feat(UTIL_EST)) return; /* Avoid store if the flag has been already reset */ enqueued = avg->util_est.enqueued; if (!(enqueued & UTIL_AVG_UNCHANGED)) return; /* Reset flag to report util_avg has been updated */ enqueued &= ~UTIL_AVG_UNCHANGED; WRITE_ONCE(avg->util_est.enqueued, enqueued); } static inline u64 rq_clock_pelt(struct rq *rq) { lockdep_assert_rq_held(rq); assert_clock_updated(rq); return rq->clock_pelt - rq->lost_idle_time; } /* The rq is idle, we can sync to clock_task */ static inline void _update_idle_rq_clock_pelt(struct rq *rq) { rq->clock_pelt = rq_clock_task(rq); u64_u32_store(rq->clock_idle, rq_clock(rq)); /* Paired with smp_rmb in migrate_se_pelt_lag() */ smp_wmb(); u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq)); } /* * The clock_pelt scales the time to reflect the effective amount of * computation done during the running delta time but then sync back to * clock_task when rq is idle. * * * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16 * @ max capacity ------******---------------******--------------- * @ half capacity ------************---------************--------- * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16 * */ static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) { if (unlikely(is_idle_task(rq->curr))) { _update_idle_rq_clock_pelt(rq); return; } /* * When a rq runs at a lower compute capacity, it will need * more time to do the same amount of work than at max * capacity. In order to be invariant, we scale the delta to * reflect how much work has been really done. * Running longer results in stealing idle time that will * disturb the load signal compared to max capacity. This * stolen idle time will be automatically reflected when the * rq will be idle and the clock will be synced with * rq_clock_task. */ /* * Scale the elapsed time to reflect the real amount of * computation */ delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq))); delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq))); rq->clock_pelt += delta; } /* * When rq becomes idle, we have to check if it has lost idle time * because it was fully busy. A rq is fully used when the /Sum util_sum * is greater or equal to: * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT; * For optimization and computing rounding purpose, we don't take into account * the position in the current window (period_contrib) and we use the higher * bound of util_sum to decide. */ static inline void update_idle_rq_clock_pelt(struct rq *rq) { u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX; u32 util_sum = rq->cfs.avg.util_sum; util_sum += rq->avg_rt.util_sum; util_sum += rq->avg_dl.util_sum; /* * Reflecting stolen time makes sense only if the idle * phase would be present at max capacity. As soon as the * utilization of a rq has reached the maximum value, it is * considered as an always running rq without idle time to * steal. This potential idle time is considered as lost in * this case. We keep track of this lost idle time compare to * rq's clock_task. */ if (util_sum >= divider) rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt; _update_idle_rq_clock_pelt(rq); } #ifdef CONFIG_CFS_BANDWIDTH static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { u64 throttled; if (unlikely(cfs_rq->throttle_count)) throttled = U64_MAX; else throttled = cfs_rq->throttled_clock_pelt_time; u64_u32_store(cfs_rq->throttled_pelt_idle, throttled); } /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { if (unlikely(cfs_rq->throttle_count)) return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time; return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time; } #else static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { return rq_clock_pelt(rq_of(cfs_rq)); } #endif #else static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) { return 0; } static inline int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) { return 0; } static inline int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) { return 0; } static inline int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) { return 0; } static inline u64 thermal_load_avg(struct rq *rq) { return 0; } static inline int update_irq_load_avg(struct rq *rq, u64 running) { return 0; } static inline u64 rq_clock_pelt(struct rq *rq) { return rq_clock_task(rq); } static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) { } static inline void update_idle_rq_clock_pelt(struct rq *rq) { } static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } #endif |