Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qed NIC Driver
 * Copyright (c) 2015-2017  QLogic Corporation
 * Copyright (c) 2019-2020 Marvell International Ltd.
 */

#include <linux/types.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/qed/qed_chain.h>
#include "qed.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_reg_addr.h"
#include "qed_sriov.h"

#define QED_BAR_ACQUIRE_TIMEOUT_USLEEP_CNT	1000
#define QED_BAR_ACQUIRE_TIMEOUT_USLEEP		1000
#define QED_BAR_ACQUIRE_TIMEOUT_UDELAY_CNT	100000
#define QED_BAR_ACQUIRE_TIMEOUT_UDELAY		10

/* Invalid values */
#define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))

struct qed_ptt {
	struct list_head	list_entry;
	unsigned int		idx;
	struct pxp_ptt_entry	pxp;
	u8			hwfn_id;
};

struct qed_ptt_pool {
	struct list_head	free_list;
	spinlock_t		lock; /* ptt synchronized access */
	struct qed_ptt		ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
};

int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
{
	struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
	int i;

	if (!p_pool)
		return -ENOMEM;

	INIT_LIST_HEAD(&p_pool->free_list);
	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
		p_pool->ptts[i].idx = i;
		p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
		p_pool->ptts[i].pxp.pretend.control = 0;
		p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
		if (i >= RESERVED_PTT_MAX)
			list_add(&p_pool->ptts[i].list_entry,
				 &p_pool->free_list);
	}

	p_hwfn->p_ptt_pool = p_pool;
	spin_lock_init(&p_pool->lock);

	return 0;
}

void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
{
	struct qed_ptt *p_ptt;
	int i;

	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
		p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
		p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
	}
}

void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
{
	kfree(p_hwfn->p_ptt_pool);
	p_hwfn->p_ptt_pool = NULL;
}

struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
{
	return qed_ptt_acquire_context(p_hwfn, false);
}

struct qed_ptt *qed_ptt_acquire_context(struct qed_hwfn *p_hwfn, bool is_atomic)
{
	struct qed_ptt *p_ptt;
	unsigned int i, count;

	if (is_atomic)
		count = QED_BAR_ACQUIRE_TIMEOUT_UDELAY_CNT;
	else
		count = QED_BAR_ACQUIRE_TIMEOUT_USLEEP_CNT;

	/* Take the free PTT from the list */
	for (i = 0; i < count; i++) {
		spin_lock_bh(&p_hwfn->p_ptt_pool->lock);

		if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
			p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
						 struct qed_ptt, list_entry);
			list_del(&p_ptt->list_entry);

			spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);

			DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
				   "allocated ptt %d\n", p_ptt->idx);
			return p_ptt;
		}

		spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);

		if (is_atomic)
			udelay(QED_BAR_ACQUIRE_TIMEOUT_UDELAY);
		else
			usleep_range(QED_BAR_ACQUIRE_TIMEOUT_USLEEP,
				     QED_BAR_ACQUIRE_TIMEOUT_USLEEP * 2);
	}

	DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
	return NULL;
}

void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
	list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
	spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
}

u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	/* The HW is using DWORDS and we need to translate it to Bytes */
	return le32_to_cpu(p_ptt->pxp.offset) << 2;
}

static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
{
	return PXP_PF_WINDOW_ADMIN_PER_PF_START +
	       p_ptt->idx * sizeof(struct pxp_ptt_entry);
}

u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
{
	return PXP_EXTERNAL_BAR_PF_WINDOW_START +
	       p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
}

void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
		     struct qed_ptt *p_ptt, u32 new_hw_addr)
{
	u32 prev_hw_addr;

	prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);

	if (new_hw_addr == prev_hw_addr)
		return;

	/* Update PTT entery in admin window */
	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
		   "Updating PTT entry %d to offset 0x%x\n",
		   p_ptt->idx, new_hw_addr);

	/* The HW is using DWORDS and the address is in Bytes */
	p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);

	REG_WR(p_hwfn,
	       qed_ptt_config_addr(p_ptt) +
	       offsetof(struct pxp_ptt_entry, offset),
	       le32_to_cpu(p_ptt->pxp.offset));
}

static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
		       struct qed_ptt *p_ptt, u32 hw_addr)
{
	u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
	u32 offset;

	offset = hw_addr - win_hw_addr;

	if (p_ptt->hwfn_id != p_hwfn->my_id)
		DP_NOTICE(p_hwfn,
			  "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
			  p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);

	/* Verify the address is within the window */
	if (hw_addr < win_hw_addr ||
	    offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
		qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
		offset = 0;
	}

	return qed_ptt_get_bar_addr(p_ptt) + offset;
}

struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
				     enum reserved_ptts ptt_idx)
{
	if (ptt_idx >= RESERVED_PTT_MAX) {
		DP_NOTICE(p_hwfn,
			  "Requested PTT %d is out of range\n", ptt_idx);
		return NULL;
	}

	return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
}

void qed_wr(struct qed_hwfn *p_hwfn,
	    struct qed_ptt *p_ptt,
	    u32 hw_addr, u32 val)
{
	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);

	REG_WR(p_hwfn, bar_addr, val);
	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
		   bar_addr, hw_addr, val);
}

u32 qed_rd(struct qed_hwfn *p_hwfn,
	   struct qed_ptt *p_ptt,
	   u32 hw_addr)
{
	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
	u32 val = REG_RD(p_hwfn, bar_addr);

	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
		   bar_addr, hw_addr, val);

	return val;
}

static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
			  struct qed_ptt *p_ptt,
			  void *addr, u32 hw_addr, size_t n, bool to_device)
{
	u32 dw_count, *host_addr, hw_offset;
	size_t quota, done = 0;
	u32 __iomem *reg_addr;

	while (done < n) {
		quota = min_t(size_t, n - done,
			      PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);

		if (IS_PF(p_hwfn->cdev)) {
			qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
			hw_offset = qed_ptt_get_bar_addr(p_ptt);
		} else {
			hw_offset = hw_addr + done;
		}

		dw_count = quota / 4;
		host_addr = (u32 *)((u8 *)addr + done);
		reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
		if (to_device)
			while (dw_count--)
				DIRECT_REG_WR(reg_addr++, *host_addr++);
		else
			while (dw_count--)
				*host_addr++ = DIRECT_REG_RD(reg_addr++);

		done += quota;
	}
}

void qed_memcpy_from(struct qed_hwfn *p_hwfn,
		     struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
{
	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
		   "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
		   hw_addr, dest, hw_addr, (unsigned long)n);

	qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
}

void qed_memcpy_to(struct qed_hwfn *p_hwfn,
		   struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
{
	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
		   "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
		   hw_addr, hw_addr, src, (unsigned long)n);

	qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
}

void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
{
	u16 control = 0;

	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);

	/* Every pretend undos previous pretends, including
	 * previous port pretend.
	 */
	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);

	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);

	p_ptt->pxp.pretend.control = cpu_to_le16(control);
	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);

	REG_WR(p_hwfn,
	       qed_ptt_config_addr(p_ptt) +
	       offsetof(struct pxp_ptt_entry, pretend),
	       *(u32 *)&p_ptt->pxp.pretend);
}

void qed_port_pretend(struct qed_hwfn *p_hwfn,
		      struct qed_ptt *p_ptt, u8 port_id)
{
	u16 control = 0;

	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);

	p_ptt->pxp.pretend.control = cpu_to_le16(control);

	REG_WR(p_hwfn,
	       qed_ptt_config_addr(p_ptt) +
	       offsetof(struct pxp_ptt_entry, pretend),
	       *(u32 *)&p_ptt->pxp.pretend);
}

void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
	u16 control = 0;

	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);

	p_ptt->pxp.pretend.control = cpu_to_le16(control);

	REG_WR(p_hwfn,
	       qed_ptt_config_addr(p_ptt) +
	       offsetof(struct pxp_ptt_entry, pretend),
	       *(u32 *)&p_ptt->pxp.pretend);
}

void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
			  struct qed_ptt *p_ptt, u8 port_id, u16 fid)
{
	u16 control = 0;

	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
	p_ptt->pxp.pretend.control = cpu_to_le16(control);
	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
	REG_WR(p_hwfn,
	       qed_ptt_config_addr(p_ptt) +
	       offsetof(struct pxp_ptt_entry, pretend),
	       *(u32 *)&p_ptt->pxp.pretend);
}

u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
{
	u32 concrete_fid = 0;

	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);

	return concrete_fid;
}

/* DMAE */
#define QED_DMAE_FLAGS_IS_SET(params, flag) \
	((params) != NULL && GET_FIELD((params)->flags, QED_DMAE_PARAMS_##flag))

static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
			    const u8 is_src_type_grc,
			    const u8 is_dst_type_grc,
			    struct qed_dmae_params *p_params)
{
	u8 src_pfid, dst_pfid, port_id;
	u16 opcode_b = 0;
	u32 opcode = 0;

	/* Whether the source is the PCIe or the GRC.
	 * 0- The source is the PCIe
	 * 1- The source is the GRC.
	 */
	SET_FIELD(opcode, DMAE_CMD_SRC,
		  (is_src_type_grc ? dmae_cmd_src_grc : dmae_cmd_src_pcie));
	src_pfid = QED_DMAE_FLAGS_IS_SET(p_params, SRC_PF_VALID) ?
	    p_params->src_pfid : p_hwfn->rel_pf_id;
	SET_FIELD(opcode, DMAE_CMD_SRC_PF_ID, src_pfid);

	/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
	SET_FIELD(opcode, DMAE_CMD_DST,
		  (is_dst_type_grc ? dmae_cmd_dst_grc : dmae_cmd_dst_pcie));
	dst_pfid = QED_DMAE_FLAGS_IS_SET(p_params, DST_PF_VALID) ?
	    p_params->dst_pfid : p_hwfn->rel_pf_id;
	SET_FIELD(opcode, DMAE_CMD_DST_PF_ID, dst_pfid);


	/* Whether to write a completion word to the completion destination:
	 * 0-Do not write a completion word
	 * 1-Write the completion word
	 */
	SET_FIELD(opcode, DMAE_CMD_COMP_WORD_EN, 1);
	SET_FIELD(opcode, DMAE_CMD_SRC_ADDR_RESET, 1);

	if (QED_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
		SET_FIELD(opcode, DMAE_CMD_COMP_FUNC, 1);

	/* swapping mode 3 - big endian */
	SET_FIELD(opcode, DMAE_CMD_ENDIANITY_MODE, DMAE_CMD_ENDIANITY);

	port_id = (QED_DMAE_FLAGS_IS_SET(p_params, PORT_VALID)) ?
	    p_params->port_id : p_hwfn->port_id;
	SET_FIELD(opcode, DMAE_CMD_PORT_ID, port_id);

	/* reset source address in next go */
	SET_FIELD(opcode, DMAE_CMD_SRC_ADDR_RESET, 1);

	/* reset dest address in next go */
	SET_FIELD(opcode, DMAE_CMD_DST_ADDR_RESET, 1);

	/* SRC/DST VFID: all 1's - pf, otherwise VF id */
	if (QED_DMAE_FLAGS_IS_SET(p_params, SRC_VF_VALID)) {
		SET_FIELD(opcode, DMAE_CMD_SRC_VF_ID_VALID, 1);
		SET_FIELD(opcode_b, DMAE_CMD_SRC_VF_ID, p_params->src_vfid);
	} else {
		SET_FIELD(opcode_b, DMAE_CMD_SRC_VF_ID, 0xFF);
	}
	if (QED_DMAE_FLAGS_IS_SET(p_params, DST_VF_VALID)) {
		SET_FIELD(opcode, DMAE_CMD_DST_VF_ID_VALID, 1);
		SET_FIELD(opcode_b, DMAE_CMD_DST_VF_ID, p_params->dst_vfid);
	} else {
		SET_FIELD(opcode_b, DMAE_CMD_DST_VF_ID, 0xFF);
	}

	p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
	p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
}

u32 qed_dmae_idx_to_go_cmd(u8 idx)
{
	/* All the DMAE 'go' registers form an array in internal memory */
	return DMAE_REG_GO_C0 + (idx << 2);
}

static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
				 struct qed_ptt *p_ptt)
{
	struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
	u8 idx_cmd = p_hwfn->dmae_info.channel, i;
	int qed_status = 0;

	/* verify address is not NULL */
	if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
	     ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
		DP_NOTICE(p_hwfn,
			  "source or destination address 0 idx_cmd=%d\n"
			  "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
			  idx_cmd,
			  le32_to_cpu(p_command->opcode),
			  le16_to_cpu(p_command->opcode_b),
			  le16_to_cpu(p_command->length_dw),
			  le32_to_cpu(p_command->src_addr_hi),
			  le32_to_cpu(p_command->src_addr_lo),
			  le32_to_cpu(p_command->dst_addr_hi),
			  le32_to_cpu(p_command->dst_addr_lo));

		return -EINVAL;
	}

	DP_VERBOSE(p_hwfn,
		   NETIF_MSG_HW,
		   "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
		   idx_cmd,
		   le32_to_cpu(p_command->opcode),
		   le16_to_cpu(p_command->opcode_b),
		   le16_to_cpu(p_command->length_dw),
		   le32_to_cpu(p_command->src_addr_hi),
		   le32_to_cpu(p_command->src_addr_lo),
		   le32_to_cpu(p_command->dst_addr_hi),
		   le32_to_cpu(p_command->dst_addr_lo));

	/* Copy the command to DMAE - need to do it before every call
	 * for source/dest address no reset.
	 * The first 9 DWs are the command registers, the 10 DW is the
	 * GO register, and the rest are result registers
	 * (which are read only by the client).
	 */
	for (i = 0; i < DMAE_CMD_SIZE; i++) {
		u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
			   *(((u32 *)p_command) + i) : 0;

		qed_wr(p_hwfn, p_ptt,
		       DMAE_REG_CMD_MEM +
		       (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
		       (i * sizeof(u32)), data);
	}

	qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);

	return qed_status;
}

int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
{
	dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
	struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
	u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
	u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;

	*p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
				     sizeof(u32), p_addr, GFP_KERNEL);
	if (!*p_comp)
		goto err;

	p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
	*p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
				    sizeof(struct dmae_cmd),
				    p_addr, GFP_KERNEL);
	if (!*p_cmd)
		goto err;

	p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
	*p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
				     sizeof(u32) * DMAE_MAX_RW_SIZE,
				     p_addr, GFP_KERNEL);
	if (!*p_buff)
		goto err;

	p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;

	return 0;
err:
	qed_dmae_info_free(p_hwfn);
	return -ENOMEM;
}

void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
{
	dma_addr_t p_phys;

	/* Just make sure no one is in the middle */
	mutex_lock(&p_hwfn->dmae_info.mutex);

	if (p_hwfn->dmae_info.p_completion_word) {
		p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
				  sizeof(u32),
				  p_hwfn->dmae_info.p_completion_word, p_phys);
		p_hwfn->dmae_info.p_completion_word = NULL;
	}

	if (p_hwfn->dmae_info.p_dmae_cmd) {
		p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
				  sizeof(struct dmae_cmd),
				  p_hwfn->dmae_info.p_dmae_cmd, p_phys);
		p_hwfn->dmae_info.p_dmae_cmd = NULL;
	}

	if (p_hwfn->dmae_info.p_intermediate_buffer) {
		p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
				  sizeof(u32) * DMAE_MAX_RW_SIZE,
				  p_hwfn->dmae_info.p_intermediate_buffer,
				  p_phys);
		p_hwfn->dmae_info.p_intermediate_buffer = NULL;
	}

	mutex_unlock(&p_hwfn->dmae_info.mutex);
}

static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
{
	u32 wait_cnt_limit = 10000, wait_cnt = 0;
	int qed_status = 0;

	barrier();
	while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
		udelay(DMAE_MIN_WAIT_TIME);
		if (++wait_cnt > wait_cnt_limit) {
			DP_NOTICE(p_hwfn->cdev,
				  "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
				  *p_hwfn->dmae_info.p_completion_word,
				 DMAE_COMPLETION_VAL);
			qed_status = -EBUSY;
			break;
		}

		/* to sync the completion_word since we are not
		 * using the volatile keyword for p_completion_word
		 */
		barrier();
	}

	if (qed_status == 0)
		*p_hwfn->dmae_info.p_completion_word = 0;

	return qed_status;
}

static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
					  struct qed_ptt *p_ptt,
					  u64 src_addr,
					  u64 dst_addr,
					  u8 src_type,
					  u8 dst_type,
					  u32 length_dw)
{
	dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
	int qed_status = 0;

	switch (src_type) {
	case QED_DMAE_ADDRESS_GRC:
	case QED_DMAE_ADDRESS_HOST_PHYS:
		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
		break;
	/* for virtual source addresses we use the intermediate buffer. */
	case QED_DMAE_ADDRESS_HOST_VIRT:
		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
		memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
		       (void *)(uintptr_t)src_addr,
		       length_dw * sizeof(u32));
		break;
	default:
		return -EINVAL;
	}

	switch (dst_type) {
	case QED_DMAE_ADDRESS_GRC:
	case QED_DMAE_ADDRESS_HOST_PHYS:
		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
		break;
	/* for virtual source addresses we use the intermediate buffer. */
	case QED_DMAE_ADDRESS_HOST_VIRT:
		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
		break;
	default:
		return -EINVAL;
	}

	cmd->length_dw = cpu_to_le16((u16)length_dw);

	qed_dmae_post_command(p_hwfn, p_ptt);

	qed_status = qed_dmae_operation_wait(p_hwfn);

	if (qed_status) {
		DP_NOTICE(p_hwfn,
			  "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
			  src_addr, dst_addr, length_dw);
		return qed_status;
	}

	if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
		memcpy((void *)(uintptr_t)(dst_addr),
		       &p_hwfn->dmae_info.p_intermediate_buffer[0],
		       length_dw * sizeof(u32));

	return 0;
}

static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
				    struct qed_ptt *p_ptt,
				    u64 src_addr, u64 dst_addr,
				    u8 src_type, u8 dst_type,
				    u32 size_in_dwords,
				    struct qed_dmae_params *p_params)
{
	dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
	u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
	u64 src_addr_split = 0, dst_addr_split = 0;
	u16 length_limit = DMAE_MAX_RW_SIZE;
	int qed_status = 0;
	u32 offset = 0;

	if (p_hwfn->cdev->recov_in_prog) {
		DP_VERBOSE(p_hwfn,
			   NETIF_MSG_HW,
			   "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
			   src_addr, src_type, dst_addr, dst_type,
			   size_in_dwords);

		/* Let the flow complete w/o any error handling */
		return 0;
	}

	qed_dmae_opcode(p_hwfn,
			(src_type == QED_DMAE_ADDRESS_GRC),
			(dst_type == QED_DMAE_ADDRESS_GRC),
			p_params);

	cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
	cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
	cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);

	/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
	cnt_split = size_in_dwords / length_limit;
	length_mod = size_in_dwords % length_limit;

	src_addr_split = src_addr;
	dst_addr_split = dst_addr;

	for (i = 0; i <= cnt_split; i++) {
		offset = length_limit * i;

		if (!QED_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
			if (src_type == QED_DMAE_ADDRESS_GRC)
				src_addr_split = src_addr + offset;
			else
				src_addr_split = src_addr + (offset * 4);
		}

		if (dst_type == QED_DMAE_ADDRESS_GRC)
			dst_addr_split = dst_addr + offset;
		else
			dst_addr_split = dst_addr + (offset * 4);

		length_cur = (cnt_split == i) ? length_mod : length_limit;

		/* might be zero on last iteration */
		if (!length_cur)
			continue;

		qed_status = qed_dmae_execute_sub_operation(p_hwfn,
							    p_ptt,
							    src_addr_split,
							    dst_addr_split,
							    src_type,
							    dst_type,
							    length_cur);
		if (qed_status) {
			qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_DMAE_FAIL,
					  "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
					  qed_status, src_addr,
					  dst_addr, length_cur);
			break;
		}
	}

	return qed_status;
}

int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
		      struct qed_ptt *p_ptt,
		      u64 source_addr, u32 grc_addr, u32 size_in_dwords,
		      struct qed_dmae_params *p_params)
{
	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
	int rc;


	mutex_lock(&p_hwfn->dmae_info.mutex);

	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
				      grc_addr_in_dw,
				      QED_DMAE_ADDRESS_HOST_VIRT,
				      QED_DMAE_ADDRESS_GRC,
				      size_in_dwords, p_params);

	mutex_unlock(&p_hwfn->dmae_info.mutex);

	return rc;
}

int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
		      struct qed_ptt *p_ptt,
		      u32 grc_addr,
		      dma_addr_t dest_addr, u32 size_in_dwords,
		      struct qed_dmae_params *p_params)
{
	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
	int rc;


	mutex_lock(&p_hwfn->dmae_info.mutex);

	rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
				      dest_addr, QED_DMAE_ADDRESS_GRC,
				      QED_DMAE_ADDRESS_HOST_VIRT,
				      size_in_dwords, p_params);

	mutex_unlock(&p_hwfn->dmae_info.mutex);

	return rc;
}

int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
		       struct qed_ptt *p_ptt,
		       dma_addr_t source_addr,
		       dma_addr_t dest_addr,
		       u32 size_in_dwords, struct qed_dmae_params *p_params)
{
	int rc;

	mutex_lock(&(p_hwfn->dmae_info.mutex));

	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
				      dest_addr,
				      QED_DMAE_ADDRESS_HOST_PHYS,
				      QED_DMAE_ADDRESS_HOST_PHYS,
				      size_in_dwords, p_params);

	mutex_unlock(&(p_hwfn->dmae_info.mutex));

	return rc;
}

void qed_hw_err_notify(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
		       enum qed_hw_err_type err_type, const char *fmt, ...)
{
	char buf[QED_HW_ERR_MAX_STR_SIZE];
	va_list vl;
	int len;

	if (fmt) {
		va_start(vl, fmt);
		len = vsnprintf(buf, QED_HW_ERR_MAX_STR_SIZE, fmt, vl);
		va_end(vl);

		if (len > QED_HW_ERR_MAX_STR_SIZE - 1)
			len = QED_HW_ERR_MAX_STR_SIZE - 1;

		DP_NOTICE(p_hwfn, "%s", buf);
	}

	/* Fan failure cannot be masked by handling of another HW error */
	if (p_hwfn->cdev->recov_in_prog &&
	    err_type != QED_HW_ERR_FAN_FAIL) {
		DP_VERBOSE(p_hwfn,
			   NETIF_MSG_DRV,
			   "Recovery is in progress. Avoid notifying about HW error %d.\n",
			   err_type);
		return;
	}

	qed_hw_error_occurred(p_hwfn, err_type);

	if (fmt)
		qed_mcp_send_raw_debug_data(p_hwfn, p_ptt, buf, len);
}

int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
		    struct qed_ptt *p_ptt, const char *phase)
{
	u32 size = PAGE_SIZE / 2, val;
	int rc = 0;
	dma_addr_t p_phys;
	void *p_virt;
	u32 *p_tmp;

	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
				    2 * size, &p_phys, GFP_KERNEL);
	if (!p_virt) {
		DP_NOTICE(p_hwfn,
			  "DMAE sanity [%s]: failed to allocate memory\n",
			  phase);
		return -ENOMEM;
	}

	/* Fill the bottom half of the allocated memory with a known pattern */
	for (p_tmp = (u32 *)p_virt;
	     p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
		/* Save the address itself as the value */
		val = (u32)(uintptr_t)p_tmp;
		*p_tmp = val;
	}

	/* Zero the top half of the allocated memory */
	memset((u8 *)p_virt + size, 0, size);

	DP_VERBOSE(p_hwfn,
		   QED_MSG_SP,
		   "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
		   phase,
		   (u64)p_phys,
		   p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);

	rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
				size / 4, NULL);
	if (rc) {
		DP_NOTICE(p_hwfn,
			  "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
			  phase, rc);
		goto out;
	}

	/* Verify that the top half of the allocated memory has the pattern */
	for (p_tmp = (u32 *)((u8 *)p_virt + size);
	     p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
		/* The corresponding address in the bottom half */
		val = (u32)(uintptr_t)p_tmp - size;

		if (*p_tmp != val) {
			DP_NOTICE(p_hwfn,
				  "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
				  phase,
				  (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
				  p_tmp, *p_tmp, val);
			rc = -EINVAL;
			goto out;
		}
	}

out:
	dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
	return rc;
}