Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | // SPDX-License-Identifier: GPL-2.0-only /* * FILS AEAD for (Re)Association Request/Response frames * Copyright 2016, Qualcomm Atheros, Inc. */ #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include "ieee80211_i.h" #include "aes_cmac.h" #include "fils_aead.h" static void gf_mulx(u8 *pad) { u64 a = get_unaligned_be64(pad); u64 b = get_unaligned_be64(pad + 8); put_unaligned_be64((a << 1) | (b >> 63), pad); put_unaligned_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0), pad + 8); } static int aes_s2v(struct crypto_shash *tfm, size_t num_elem, const u8 *addr[], size_t len[], u8 *v) { u8 d[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE] = {}; SHASH_DESC_ON_STACK(desc, tfm); size_t i; desc->tfm = tfm; /* D = AES-CMAC(K, <zero>) */ crypto_shash_digest(desc, tmp, AES_BLOCK_SIZE, d); for (i = 0; i < num_elem - 1; i++) { /* D = dbl(D) xor AES_CMAC(K, Si) */ gf_mulx(d); /* dbl */ crypto_shash_digest(desc, addr[i], len[i], tmp); crypto_xor(d, tmp, AES_BLOCK_SIZE); } crypto_shash_init(desc); if (len[i] >= AES_BLOCK_SIZE) { /* len(Sn) >= 128 */ /* T = Sn xorend D */ crypto_shash_update(desc, addr[i], len[i] - AES_BLOCK_SIZE); crypto_xor(d, addr[i] + len[i] - AES_BLOCK_SIZE, AES_BLOCK_SIZE); } else { /* len(Sn) < 128 */ /* T = dbl(D) xor pad(Sn) */ gf_mulx(d); /* dbl */ crypto_xor(d, addr[i], len[i]); d[len[i]] ^= 0x80; } /* V = AES-CMAC(K, T) */ crypto_shash_finup(desc, d, AES_BLOCK_SIZE, v); return 0; } /* Note: addr[] and len[] needs to have one extra slot at the end. */ static int aes_siv_encrypt(const u8 *key, size_t key_len, const u8 *plain, size_t plain_len, size_t num_elem, const u8 *addr[], size_t len[], u8 *out) { u8 v[AES_BLOCK_SIZE]; struct crypto_shash *tfm; struct crypto_skcipher *tfm2; struct skcipher_request *req; int res; struct scatterlist src[1], dst[1]; u8 *tmp; key_len /= 2; /* S2V key || CTR key */ addr[num_elem] = plain; len[num_elem] = plain_len; num_elem++; /* S2V */ tfm = crypto_alloc_shash("cmac(aes)", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); /* K1 for S2V */ res = crypto_shash_setkey(tfm, key, key_len); if (!res) res = aes_s2v(tfm, num_elem, addr, len, v); crypto_free_shash(tfm); if (res) return res; /* Use a temporary buffer of the plaintext to handle need for * overwriting this during AES-CTR. */ tmp = kmemdup(plain, plain_len, GFP_KERNEL); if (!tmp) return -ENOMEM; /* IV for CTR before encrypted data */ memcpy(out, v, AES_BLOCK_SIZE); /* Synthetic IV to be used as the initial counter in CTR: * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31) */ v[8] &= 0x7f; v[12] &= 0x7f; /* CTR */ tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm2)) { kfree(tmp); return PTR_ERR(tfm2); } /* K2 for CTR */ res = crypto_skcipher_setkey(tfm2, key + key_len, key_len); if (res) goto fail; req = skcipher_request_alloc(tfm2, GFP_KERNEL); if (!req) { res = -ENOMEM; goto fail; } sg_init_one(src, tmp, plain_len); sg_init_one(dst, out + AES_BLOCK_SIZE, plain_len); skcipher_request_set_crypt(req, src, dst, plain_len, v); res = crypto_skcipher_encrypt(req); skcipher_request_free(req); fail: kfree(tmp); crypto_free_skcipher(tfm2); return res; } /* Note: addr[] and len[] needs to have one extra slot at the end. */ static int aes_siv_decrypt(const u8 *key, size_t key_len, const u8 *iv_crypt, size_t iv_c_len, size_t num_elem, const u8 *addr[], size_t len[], u8 *out) { struct crypto_shash *tfm; struct crypto_skcipher *tfm2; struct skcipher_request *req; struct scatterlist src[1], dst[1]; size_t crypt_len; int res; u8 frame_iv[AES_BLOCK_SIZE], iv[AES_BLOCK_SIZE]; u8 check[AES_BLOCK_SIZE]; crypt_len = iv_c_len - AES_BLOCK_SIZE; key_len /= 2; /* S2V key || CTR key */ addr[num_elem] = out; len[num_elem] = crypt_len; num_elem++; memcpy(iv, iv_crypt, AES_BLOCK_SIZE); memcpy(frame_iv, iv_crypt, AES_BLOCK_SIZE); /* Synthetic IV to be used as the initial counter in CTR: * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31) */ iv[8] &= 0x7f; iv[12] &= 0x7f; /* CTR */ tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm2)) return PTR_ERR(tfm2); /* K2 for CTR */ res = crypto_skcipher_setkey(tfm2, key + key_len, key_len); if (res) { crypto_free_skcipher(tfm2); return res; } req = skcipher_request_alloc(tfm2, GFP_KERNEL); if (!req) { crypto_free_skcipher(tfm2); return -ENOMEM; } sg_init_one(src, iv_crypt + AES_BLOCK_SIZE, crypt_len); sg_init_one(dst, out, crypt_len); skcipher_request_set_crypt(req, src, dst, crypt_len, iv); res = crypto_skcipher_decrypt(req); skcipher_request_free(req); crypto_free_skcipher(tfm2); if (res) return res; /* S2V */ tfm = crypto_alloc_shash("cmac(aes)", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); /* K1 for S2V */ res = crypto_shash_setkey(tfm, key, key_len); if (!res) res = aes_s2v(tfm, num_elem, addr, len, check); crypto_free_shash(tfm); if (res) return res; if (memcmp(check, frame_iv, AES_BLOCK_SIZE) != 0) return -EINVAL; return 0; } int fils_encrypt_assoc_req(struct sk_buff *skb, struct ieee80211_mgd_assoc_data *assoc_data) { struct ieee80211_mgmt *mgmt = (void *)skb->data; u8 *capab, *ies, *encr; const u8 *addr[5 + 1]; const struct element *session; size_t len[5 + 1]; size_t crypt_len; if (ieee80211_is_reassoc_req(mgmt->frame_control)) { capab = (u8 *)&mgmt->u.reassoc_req.capab_info; ies = mgmt->u.reassoc_req.variable; } else { capab = (u8 *)&mgmt->u.assoc_req.capab_info; ies = mgmt->u.assoc_req.variable; } session = cfg80211_find_ext_elem(WLAN_EID_EXT_FILS_SESSION, ies, skb->data + skb->len - ies); if (!session || session->datalen != 1 + 8) return -EINVAL; /* encrypt after FILS Session element */ encr = (u8 *)session->data + 1 + 8; /* AES-SIV AAD vectors */ /* The STA's MAC address */ addr[0] = mgmt->sa; len[0] = ETH_ALEN; /* The AP's BSSID */ addr[1] = mgmt->da; len[1] = ETH_ALEN; /* The STA's nonce */ addr[2] = assoc_data->fils_nonces; len[2] = FILS_NONCE_LEN; /* The AP's nonce */ addr[3] = &assoc_data->fils_nonces[FILS_NONCE_LEN]; len[3] = FILS_NONCE_LEN; /* The (Re)Association Request frame from the Capability Information * field to the FILS Session element (both inclusive). */ addr[4] = capab; len[4] = encr - capab; crypt_len = skb->data + skb->len - encr; skb_put(skb, AES_BLOCK_SIZE); return aes_siv_encrypt(assoc_data->fils_kek, assoc_data->fils_kek_len, encr, crypt_len, 5, addr, len, encr); } int fils_decrypt_assoc_resp(struct ieee80211_sub_if_data *sdata, u8 *frame, size_t *frame_len, struct ieee80211_mgd_assoc_data *assoc_data) { struct ieee80211_mgmt *mgmt = (void *)frame; u8 *capab, *ies, *encr; const u8 *addr[5 + 1]; const struct element *session; size_t len[5 + 1]; int res; size_t crypt_len; if (*frame_len < 24 + 6) return -EINVAL; capab = (u8 *)&mgmt->u.assoc_resp.capab_info; ies = mgmt->u.assoc_resp.variable; session = cfg80211_find_ext_elem(WLAN_EID_EXT_FILS_SESSION, ies, frame + *frame_len - ies); if (!session || session->datalen != 1 + 8) { mlme_dbg(sdata, "No (valid) FILS Session element in (Re)Association Response frame from %pM", mgmt->sa); return -EINVAL; } /* decrypt after FILS Session element */ encr = (u8 *)session->data + 1 + 8; /* AES-SIV AAD vectors */ /* The AP's BSSID */ addr[0] = mgmt->sa; len[0] = ETH_ALEN; /* The STA's MAC address */ addr[1] = mgmt->da; len[1] = ETH_ALEN; /* The AP's nonce */ addr[2] = &assoc_data->fils_nonces[FILS_NONCE_LEN]; len[2] = FILS_NONCE_LEN; /* The STA's nonce */ addr[3] = assoc_data->fils_nonces; len[3] = FILS_NONCE_LEN; /* The (Re)Association Response frame from the Capability Information * field to the FILS Session element (both inclusive). */ addr[4] = capab; len[4] = encr - capab; crypt_len = frame + *frame_len - encr; if (crypt_len < AES_BLOCK_SIZE) { mlme_dbg(sdata, "Not enough room for AES-SIV data after FILS Session element in (Re)Association Response frame from %pM", mgmt->sa); return -EINVAL; } res = aes_siv_decrypt(assoc_data->fils_kek, assoc_data->fils_kek_len, encr, crypt_len, 5, addr, len, encr); if (res != 0) { mlme_dbg(sdata, "AES-SIV decryption of (Re)Association Response frame from %pM failed", mgmt->sa); return res; } *frame_len -= AES_BLOCK_SIZE; return 0; } |