Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Test for s390x CPU resets * * Copyright (C) 2020, IBM */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include "test_util.h" #include "kvm_util.h" #include "kselftest.h" #define LOCAL_IRQS 32 #define ARBITRARY_NON_ZERO_VCPU_ID 3 struct kvm_s390_irq buf[ARBITRARY_NON_ZERO_VCPU_ID + LOCAL_IRQS]; static uint8_t regs_null[512]; static void guest_code_initial(void) { /* set several CRs to "safe" value */ unsigned long cr2_59 = 0x10; /* enable guarded storage */ unsigned long cr8_63 = 0x1; /* monitor mask = 1 */ unsigned long cr10 = 1; /* PER START */ unsigned long cr11 = -1; /* PER END */ /* Dirty registers */ asm volatile ( " lghi 2,0x11\n" /* Round toward 0 */ " sfpc 2\n" /* set fpc to !=0 */ " lctlg 2,2,%0\n" " lctlg 8,8,%1\n" " lctlg 10,10,%2\n" " lctlg 11,11,%3\n" /* now clobber some general purpose regs */ " llihh 0,0xffff\n" " llihl 1,0x5555\n" " llilh 2,0xaaaa\n" " llill 3,0x0000\n" /* now clobber a floating point reg */ " lghi 4,0x1\n" " cdgbr 0,4\n" /* now clobber an access reg */ " sar 9,4\n" /* We embed diag 501 here to control register content */ " diag 0,0,0x501\n" : : "m" (cr2_59), "m" (cr8_63), "m" (cr10), "m" (cr11) /* no clobber list as this should not return */ ); } static void test_one_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t value) { uint64_t eval_reg; vcpu_get_reg(vcpu, id, &eval_reg); TEST_ASSERT(eval_reg == value, "value == 0x%lx", value); } static void assert_noirq(struct kvm_vcpu *vcpu) { struct kvm_s390_irq_state irq_state; int irqs; irq_state.len = sizeof(buf); irq_state.buf = (unsigned long)buf; irqs = __vcpu_ioctl(vcpu, KVM_S390_GET_IRQ_STATE, &irq_state); /* * irqs contains the number of retrieved interrupts. Any interrupt * (notably, the emergency call interrupt we have injected) should * be cleared by the resets, so this should be 0. */ TEST_ASSERT(irqs >= 0, "Could not fetch IRQs: errno %d\n", errno); TEST_ASSERT(!irqs, "IRQ pending"); } static void assert_clear(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; struct kvm_sregs sregs; struct kvm_regs regs; struct kvm_fpu fpu; vcpu_regs_get(vcpu, ®s); TEST_ASSERT(!memcmp(®s.gprs, regs_null, sizeof(regs.gprs)), "grs == 0"); vcpu_sregs_get(vcpu, &sregs); TEST_ASSERT(!memcmp(&sregs.acrs, regs_null, sizeof(sregs.acrs)), "acrs == 0"); vcpu_fpu_get(vcpu, &fpu); TEST_ASSERT(!memcmp(&fpu.fprs, regs_null, sizeof(fpu.fprs)), "fprs == 0"); /* sync regs */ TEST_ASSERT(!memcmp(sync_regs->gprs, regs_null, sizeof(sync_regs->gprs)), "gprs0-15 == 0 (sync_regs)"); TEST_ASSERT(!memcmp(sync_regs->acrs, regs_null, sizeof(sync_regs->acrs)), "acrs0-15 == 0 (sync_regs)"); TEST_ASSERT(!memcmp(sync_regs->vrs, regs_null, sizeof(sync_regs->vrs)), "vrs0-15 == 0 (sync_regs)"); } static void assert_initial_noclear(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; TEST_ASSERT(sync_regs->gprs[0] == 0xffff000000000000UL, "gpr0 == 0xffff000000000000 (sync_regs)"); TEST_ASSERT(sync_regs->gprs[1] == 0x0000555500000000UL, "gpr1 == 0x0000555500000000 (sync_regs)"); TEST_ASSERT(sync_regs->gprs[2] == 0x00000000aaaa0000UL, "gpr2 == 0x00000000aaaa0000 (sync_regs)"); TEST_ASSERT(sync_regs->gprs[3] == 0x0000000000000000UL, "gpr3 == 0x0000000000000000 (sync_regs)"); TEST_ASSERT(sync_regs->fprs[0] == 0x3ff0000000000000UL, "fpr0 == 0f1 (sync_regs)"); TEST_ASSERT(sync_regs->acrs[9] == 1, "ar9 == 1 (sync_regs)"); } static void assert_initial(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; struct kvm_sregs sregs; struct kvm_fpu fpu; /* KVM_GET_SREGS */ vcpu_sregs_get(vcpu, &sregs); TEST_ASSERT(sregs.crs[0] == 0xE0UL, "cr0 == 0xE0 (KVM_GET_SREGS)"); TEST_ASSERT(sregs.crs[14] == 0xC2000000UL, "cr14 == 0xC2000000 (KVM_GET_SREGS)"); TEST_ASSERT(!memcmp(&sregs.crs[1], regs_null, sizeof(sregs.crs[1]) * 12), "cr1-13 == 0 (KVM_GET_SREGS)"); TEST_ASSERT(sregs.crs[15] == 0, "cr15 == 0 (KVM_GET_SREGS)"); /* sync regs */ TEST_ASSERT(sync_regs->crs[0] == 0xE0UL, "cr0 == 0xE0 (sync_regs)"); TEST_ASSERT(sync_regs->crs[14] == 0xC2000000UL, "cr14 == 0xC2000000 (sync_regs)"); TEST_ASSERT(!memcmp(&sync_regs->crs[1], regs_null, 8 * 12), "cr1-13 == 0 (sync_regs)"); TEST_ASSERT(sync_regs->crs[15] == 0, "cr15 == 0 (sync_regs)"); TEST_ASSERT(sync_regs->fpc == 0, "fpc == 0 (sync_regs)"); TEST_ASSERT(sync_regs->todpr == 0, "todpr == 0 (sync_regs)"); TEST_ASSERT(sync_regs->cputm == 0, "cputm == 0 (sync_regs)"); TEST_ASSERT(sync_regs->ckc == 0, "ckc == 0 (sync_regs)"); TEST_ASSERT(sync_regs->pp == 0, "pp == 0 (sync_regs)"); TEST_ASSERT(sync_regs->gbea == 1, "gbea == 1 (sync_regs)"); /* kvm_run */ TEST_ASSERT(vcpu->run->psw_addr == 0, "psw_addr == 0 (kvm_run)"); TEST_ASSERT(vcpu->run->psw_mask == 0, "psw_mask == 0 (kvm_run)"); vcpu_fpu_get(vcpu, &fpu); TEST_ASSERT(!fpu.fpc, "fpc == 0"); test_one_reg(vcpu, KVM_REG_S390_GBEA, 1); test_one_reg(vcpu, KVM_REG_S390_PP, 0); test_one_reg(vcpu, KVM_REG_S390_TODPR, 0); test_one_reg(vcpu, KVM_REG_S390_CPU_TIMER, 0); test_one_reg(vcpu, KVM_REG_S390_CLOCK_COMP, 0); } static void assert_normal_noclear(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *sync_regs = &vcpu->run->s.regs; TEST_ASSERT(sync_regs->crs[2] == 0x10, "cr2 == 10 (sync_regs)"); TEST_ASSERT(sync_regs->crs[8] == 1, "cr10 == 1 (sync_regs)"); TEST_ASSERT(sync_regs->crs[10] == 1, "cr10 == 1 (sync_regs)"); TEST_ASSERT(sync_regs->crs[11] == -1, "cr11 == -1 (sync_regs)"); } static void assert_normal(struct kvm_vcpu *vcpu) { test_one_reg(vcpu, KVM_REG_S390_PFTOKEN, KVM_S390_PFAULT_TOKEN_INVALID); TEST_ASSERT(vcpu->run->s.regs.pft == KVM_S390_PFAULT_TOKEN_INVALID, "pft == 0xff..... (sync_regs)"); assert_noirq(vcpu); } static void inject_irq(struct kvm_vcpu *vcpu) { struct kvm_s390_irq_state irq_state; struct kvm_s390_irq *irq = &buf[0]; int irqs; /* Inject IRQ */ irq_state.len = sizeof(struct kvm_s390_irq); irq_state.buf = (unsigned long)buf; irq->type = KVM_S390_INT_EMERGENCY; irq->u.emerg.code = vcpu->id; irqs = __vcpu_ioctl(vcpu, KVM_S390_SET_IRQ_STATE, &irq_state); TEST_ASSERT(irqs >= 0, "Error injecting EMERGENCY IRQ errno %d\n", errno); } static struct kvm_vm *create_vm(struct kvm_vcpu **vcpu) { struct kvm_vm *vm; vm = vm_create(1); *vcpu = vm_vcpu_add(vm, ARBITRARY_NON_ZERO_VCPU_ID, guest_code_initial); return vm; } static void test_normal(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; ksft_print_msg("Testing normal reset\n"); vm = create_vm(&vcpu); vcpu_run(vcpu); inject_irq(vcpu); vcpu_ioctl(vcpu, KVM_S390_NORMAL_RESET, NULL); /* must clears */ assert_normal(vcpu); /* must not clears */ assert_normal_noclear(vcpu); assert_initial_noclear(vcpu); kvm_vm_free(vm); } static void test_initial(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; ksft_print_msg("Testing initial reset\n"); vm = create_vm(&vcpu); vcpu_run(vcpu); inject_irq(vcpu); vcpu_ioctl(vcpu, KVM_S390_INITIAL_RESET, NULL); /* must clears */ assert_normal(vcpu); assert_initial(vcpu); /* must not clears */ assert_initial_noclear(vcpu); kvm_vm_free(vm); } static void test_clear(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; ksft_print_msg("Testing clear reset\n"); vm = create_vm(&vcpu); vcpu_run(vcpu); inject_irq(vcpu); vcpu_ioctl(vcpu, KVM_S390_CLEAR_RESET, NULL); /* must clears */ assert_normal(vcpu); assert_initial(vcpu); assert_clear(vcpu); kvm_vm_free(vm); } struct testdef { const char *name; void (*test)(void); bool needs_cap; } testlist[] = { { "initial", test_initial, false }, { "normal", test_normal, true }, { "clear", test_clear, true }, }; int main(int argc, char *argv[]) { bool has_s390_vcpu_resets = kvm_check_cap(KVM_CAP_S390_VCPU_RESETS); int idx; ksft_print_header(); ksft_set_plan(ARRAY_SIZE(testlist)); for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) { if (!testlist[idx].needs_cap || has_s390_vcpu_resets) { testlist[idx].test(); ksft_test_result_pass("%s\n", testlist[idx].name); } else { ksft_test_result_skip("%s - no VCPU_RESETS capability\n", testlist[idx].name); } } ksft_finished(); /* Print results and exit() accordingly */ } |