Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Helper library for PATA timings * * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/libata.h> /* * This mode timing computation functionality is ported over from * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik */ /* * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). * These were taken from ATA/ATAPI-6 standard, rev 0a, except * for UDMA6, which is currently supported only by Maxtor drives. * * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. */ static const struct ata_timing ata_timing[] = { /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, { 0xFF } }; #define ENOUGH(v, unit) (((v)-1)/(unit)+1) #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0) static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) { q->setup = EZ(t->setup, T); q->act8b = EZ(t->act8b, T); q->rec8b = EZ(t->rec8b, T); q->cyc8b = EZ(t->cyc8b, T); q->active = EZ(t->active, T); q->recover = EZ(t->recover, T); q->dmack_hold = EZ(t->dmack_hold, T); q->cycle = EZ(t->cycle, T); q->udma = EZ(t->udma, UT); } void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, struct ata_timing *m, unsigned int what) { if (what & ATA_TIMING_SETUP) m->setup = max(a->setup, b->setup); if (what & ATA_TIMING_ACT8B) m->act8b = max(a->act8b, b->act8b); if (what & ATA_TIMING_REC8B) m->rec8b = max(a->rec8b, b->rec8b); if (what & ATA_TIMING_CYC8B) m->cyc8b = max(a->cyc8b, b->cyc8b); if (what & ATA_TIMING_ACTIVE) m->active = max(a->active, b->active); if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); if (what & ATA_TIMING_CYCLE) m->cycle = max(a->cycle, b->cycle); if (what & ATA_TIMING_UDMA) m->udma = max(a->udma, b->udma); } EXPORT_SYMBOL_GPL(ata_timing_merge); const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) { const struct ata_timing *t = ata_timing; while (xfer_mode > t->mode) t++; if (xfer_mode == t->mode) return t; WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", __func__, xfer_mode); return NULL; } EXPORT_SYMBOL_GPL(ata_timing_find_mode); int ata_timing_compute(struct ata_device *adev, unsigned short speed, struct ata_timing *t, int T, int UT) { const u16 *id = adev->id; const struct ata_timing *s; struct ata_timing p; /* * Find the mode. */ s = ata_timing_find_mode(speed); if (!s) return -EINVAL; memcpy(t, s, sizeof(*s)); /* * If the drive is an EIDE drive, it can tell us it needs extended * PIO/MW_DMA cycle timing. */ if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ memset(&p, 0, sizeof(p)); if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; else if ((speed <= XFER_PIO_4) || (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) p.cycle = id[ATA_ID_EIDE_DMA_MIN]; ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); } /* * Convert the timing to bus clock counts. */ ata_timing_quantize(t, t, T, UT); /* * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, * S.M.A.R.T * and some other commands. We have to ensure that the * DMA cycle timing is slower/equal than the fastest PIO timing. */ if (speed > XFER_PIO_6) { ata_timing_compute(adev, adev->pio_mode, &p, T, UT); ata_timing_merge(&p, t, t, ATA_TIMING_ALL); } /* * Lengthen active & recovery time so that cycle time is correct. */ if (t->act8b + t->rec8b < t->cyc8b) { t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; t->rec8b = t->cyc8b - t->act8b; } if (t->active + t->recover < t->cycle) { t->active += (t->cycle - (t->active + t->recover)) / 2; t->recover = t->cycle - t->active; } /* * In a few cases quantisation may produce enough errors to * leave t->cycle too low for the sum of active and recovery * if so we must correct this. */ if (t->active + t->recover > t->cycle) t->cycle = t->active + t->recover; return 0; } EXPORT_SYMBOL_GPL(ata_timing_compute); |