Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
// SPDX-License-Identifier: GPL-2.0
/*
 * trace_events_filter - generic event filtering
 *
 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
 */

#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/mutex.h>
#include <linux/perf_event.h>
#include <linux/slab.h>

#include "trace.h"
#include "trace_output.h"

#define DEFAULT_SYS_FILTER_MESSAGE					\
	"### global filter ###\n"					\
	"# Use this to set filters for multiple events.\n"		\
	"# Only events with the given fields will be affected.\n"	\
	"# If no events are modified, an error message will be displayed here"

/* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
#define OPS					\
	C( OP_GLOB,	"~"  ),			\
	C( OP_NE,	"!=" ),			\
	C( OP_EQ,	"==" ),			\
	C( OP_LE,	"<=" ),			\
	C( OP_LT,	"<"  ),			\
	C( OP_GE,	">=" ),			\
	C( OP_GT,	">"  ),			\
	C( OP_BAND,	"&"  ),			\
	C( OP_MAX,	NULL )

#undef C
#define C(a, b)	a

enum filter_op_ids { OPS };

#undef C
#define C(a, b)	b

static const char * ops[] = { OPS };

enum filter_pred_fn {
	FILTER_PRED_FN_NOP,
	FILTER_PRED_FN_64,
	FILTER_PRED_FN_S64,
	FILTER_PRED_FN_U64,
	FILTER_PRED_FN_32,
	FILTER_PRED_FN_S32,
	FILTER_PRED_FN_U32,
	FILTER_PRED_FN_16,
	FILTER_PRED_FN_S16,
	FILTER_PRED_FN_U16,
	FILTER_PRED_FN_8,
	FILTER_PRED_FN_S8,
	FILTER_PRED_FN_U8,
	FILTER_PRED_FN_COMM,
	FILTER_PRED_FN_STRING,
	FILTER_PRED_FN_STRLOC,
	FILTER_PRED_FN_STRRELLOC,
	FILTER_PRED_FN_PCHAR_USER,
	FILTER_PRED_FN_PCHAR,
	FILTER_PRED_FN_CPU,
	FILTER_PRED_FN_FUNCTION,
	FILTER_PRED_FN_,
	FILTER_PRED_TEST_VISITED,
};

struct filter_pred {
	enum filter_pred_fn 	fn_num;
	u64 			val;
	u64 			val2;
	struct regex		regex;
	unsigned short		*ops;
	struct ftrace_event_field *field;
	int 			offset;
	int			not;
	int 			op;
};

/*
 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
 * pred_funcs_##type below must match the order of them above.
 */
#define PRED_FUNC_START			OP_LE
#define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)

#define ERRORS								\
	C(NONE,			"No error"),				\
	C(INVALID_OP,		"Invalid operator"),			\
	C(TOO_MANY_OPEN,	"Too many '('"),			\
	C(TOO_MANY_CLOSE,	"Too few '('"),				\
	C(MISSING_QUOTE,	"Missing matching quote"),		\
	C(OPERAND_TOO_LONG,	"Operand too long"),			\
	C(EXPECT_STRING,	"Expecting string field"),		\
	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
	C(FIELD_NOT_FOUND,	"Field not found"),			\
	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
	C(INVALID_FILTER,	"Meaningless filter expression"),	\
	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
	C(NO_FUNCTION,		"Function not found"),			\
	C(ERRNO,		"Error"),				\
	C(NO_FILTER,		"No filter found")

#undef C
#define C(a, b)		FILT_ERR_##a

enum { ERRORS };

#undef C
#define C(a, b)		b

static const char *err_text[] = { ERRORS };

/* Called after a '!' character but "!=" and "!~" are not "not"s */
static bool is_not(const char *str)
{
	switch (str[1]) {
	case '=':
	case '~':
		return false;
	}
	return true;
}

/**
 * struct prog_entry - a singe entry in the filter program
 * @target:	     Index to jump to on a branch (actually one minus the index)
 * @when_to_branch:  The value of the result of the predicate to do a branch
 * @pred:	     The predicate to execute.
 */
struct prog_entry {
	int			target;
	int			when_to_branch;
	struct filter_pred	*pred;
};

/**
 * update_preds - assign a program entry a label target
 * @prog: The program array
 * @N: The index of the current entry in @prog
 * @invert: What to assign a program entry for its branch condition
 *
 * The program entry at @N has a target that points to the index of a program
 * entry that can have its target and when_to_branch fields updated.
 * Update the current program entry denoted by index @N target field to be
 * that of the updated entry. This will denote the entry to update if
 * we are processing an "||" after an "&&".
 */
static void update_preds(struct prog_entry *prog, int N, int invert)
{
	int t, s;

	t = prog[N].target;
	s = prog[t].target;
	prog[t].when_to_branch = invert;
	prog[t].target = N;
	prog[N].target = s;
}

struct filter_parse_error {
	int lasterr;
	int lasterr_pos;
};

static void parse_error(struct filter_parse_error *pe, int err, int pos)
{
	pe->lasterr = err;
	pe->lasterr_pos = pos;
}

typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
			     struct filter_parse_error *pe,
			     struct filter_pred **pred);

enum {
	INVERT		= 1,
	PROCESS_AND	= 2,
	PROCESS_OR	= 4,
};

/*
 * Without going into a formal proof, this explains the method that is used in
 * parsing the logical expressions.
 *
 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
 * The first pass will convert it into the following program:
 *
 * n1: r=a;       l1: if (!r) goto l4;
 * n2: r=b;       l2: if (!r) goto l4;
 * n3: r=c; r=!r; l3: if (r) goto l4;
 * n4: r=g; r=!r; l4: if (r) goto l5;
 * n5: r=d;       l5: if (r) goto T
 * n6: r=e;       l6: if (!r) goto l7;
 * n7: r=f; r=!r; l7: if (!r) goto F
 * T: return TRUE
 * F: return FALSE
 *
 * To do this, we use a data structure to represent each of the above
 * predicate and conditions that has:
 *
 *  predicate, when_to_branch, invert, target
 *
 * The "predicate" will hold the function to determine the result "r".
 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
 * The "invert" holds whether the value should be reversed before testing.
 * The "target" contains the label "l#" to jump to.
 *
 * A stack is created to hold values when parentheses are used.
 *
 * To simplify the logic, the labels will start at 0 and not 1.
 *
 * The possible invert values are 1 and 0. The number of "!"s that are in scope
 * before the predicate determines the invert value, if the number is odd then
 * the invert value is 1 and 0 otherwise. This means the invert value only
 * needs to be toggled when a new "!" is introduced compared to what is stored
 * on the stack, where parentheses were used.
 *
 * The top of the stack and "invert" are initialized to zero.
 *
 * ** FIRST PASS **
 *
 * #1 A loop through all the tokens is done:
 *
 * #2 If the token is an "(", the stack is push, and the current stack value
 *    gets the current invert value, and the loop continues to the next token.
 *    The top of the stack saves the "invert" value to keep track of what
 *    the current inversion is. As "!(a && !b || c)" would require all
 *    predicates being affected separately by the "!" before the parentheses.
 *    And that would end up being equivalent to "(!a || b) && !c"
 *
 * #3 If the token is an "!", the current "invert" value gets inverted, and
 *    the loop continues. Note, if the next token is a predicate, then
 *    this "invert" value is only valid for the current program entry,
 *    and does not affect other predicates later on.
 *
 * The only other acceptable token is the predicate string.
 *
 * #4 A new entry into the program is added saving: the predicate and the
 *    current value of "invert". The target is currently assigned to the
 *    previous program index (this will not be its final value).
 *
 * #5 We now enter another loop and look at the next token. The only valid
 *    tokens are ")", "&&", "||" or end of the input string "\0".
 *
 * #6 The invert variable is reset to the current value saved on the top of
 *    the stack.
 *
 * #7 The top of the stack holds not only the current invert value, but also
 *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
 *    precedence than "||". That is "a && b || c && d" is equivalent to
 *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
 *    to be processed. This is the case if an "&&" was the last token. If it was
 *    then we call update_preds(). This takes the program, the current index in
 *    the program, and the current value of "invert".  More will be described
 *    below about this function.
 *
 * #8 If the next token is "&&" then we set a flag in the top of the stack
 *    that denotes that "&&" needs to be processed, break out of this loop
 *    and continue with the outer loop.
 *
 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
 *    This is called with the program, the current index in the program, but
 *    this time with an inverted value of "invert" (that is !invert). This is
 *    because the value taken will become the "when_to_branch" value of the
 *    program.
 *    Note, this is called when the next token is not an "&&". As stated before,
 *    "&&" takes higher precedence, and "||" should not be processed yet if the
 *    next logical operation is "&&".
 *
 * #10 If the next token is "||" then we set a flag in the top of the stack
 *     that denotes that "||" needs to be processed, break out of this loop
 *     and continue with the outer loop.
 *
 * #11 If this is the end of the input string "\0" then we break out of both
 *     loops.
 *
 * #12 Otherwise, the next token is ")", where we pop the stack and continue
 *     this inner loop.
 *
 * Now to discuss the update_pred() function, as that is key to the setting up
 * of the program. Remember the "target" of the program is initialized to the
 * previous index and not the "l" label. The target holds the index into the
 * program that gets affected by the operand. Thus if we have something like
 *  "a || b && c", when we process "a" the target will be "-1" (undefined).
 * When we process "b", its target is "0", which is the index of "a", as that's
 * the predicate that is affected by "||". But because the next token after "b"
 * is "&&" we don't call update_preds(). Instead continue to "c". As the
 * next token after "c" is not "&&" but the end of input, we first process the
 * "&&" by calling update_preds() for the "&&" then we process the "||" by
 * calling updates_preds() with the values for processing "||".
 *
 * What does that mean? What update_preds() does is to first save the "target"
 * of the program entry indexed by the current program entry's "target"
 * (remember the "target" is initialized to previous program entry), and then
 * sets that "target" to the current index which represents the label "l#".
 * That entry's "when_to_branch" is set to the value passed in (the "invert"
 * or "!invert"). Then it sets the current program entry's target to the saved
 * "target" value (the old value of the program that had its "target" updated
 * to the label).
 *
 * Looking back at "a || b && c", we have the following steps:
 *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
 *  "||" - flag that we need to process "||"; continue outer loop
 *  "b"  - prog[1] = { "b", X, 0 }
 *  "&&" - flag that we need to process "&&"; continue outer loop
 * (Notice we did not process "||")
 *  "c"  - prog[2] = { "c", X, 1 }
 *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
 *    t = prog[2].target; // t = 1
 *    s = prog[t].target; // s = 0
 *    prog[t].target = 2; // Set target to "l2"
 *    prog[t].when_to_branch = 0;
 *    prog[2].target = s;
 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
 *    t = prog[2].target; // t = 0
 *    s = prog[t].target; // s = -1
 *    prog[t].target = 2; // Set target to "l2"
 *    prog[t].when_to_branch = 1;
 *    prog[2].target = s;
 *
 * #13 Which brings us to the final step of the first pass, which is to set
 *     the last program entry's when_to_branch and target, which will be
 *     when_to_branch = 0; target = N; ( the label after the program entry after
 *     the last program entry processed above).
 *
 * If we denote "TRUE" to be the entry after the last program entry processed,
 * and "FALSE" the program entry after that, we are now done with the first
 * pass.
 *
 * Making the above "a || b && c" have a program of:
 *  prog[0] = { "a", 1, 2 }
 *  prog[1] = { "b", 0, 2 }
 *  prog[2] = { "c", 0, 3 }
 *
 * Which translates into:
 * n0: r = a; l0: if (r) goto l2;
 * n1: r = b; l1: if (!r) goto l2;
 * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
 * T: return TRUE; l3:
 * F: return FALSE
 *
 * Although, after the first pass, the program is correct, it is
 * inefficient. The simple sample of "a || b && c" could be easily been
 * converted into:
 * n0: r = a; if (r) goto T
 * n1: r = b; if (!r) goto F
 * n2: r = c; if (!r) goto F
 * T: return TRUE;
 * F: return FALSE;
 *
 * The First Pass is over the input string. The next too passes are over
 * the program itself.
 *
 * ** SECOND PASS **
 *
 * Which brings us to the second pass. If a jump to a label has the
 * same condition as that label, it can instead jump to its target.
 * The original example of "a && !(!b || (c && g)) || d || e && !f"
 * where the first pass gives us:
 *
 * n1: r=a;       l1: if (!r) goto l4;
 * n2: r=b;       l2: if (!r) goto l4;
 * n3: r=c; r=!r; l3: if (r) goto l4;
 * n4: r=g; r=!r; l4: if (r) goto l5;
 * n5: r=d;       l5: if (r) goto T
 * n6: r=e;       l6: if (!r) goto l7;
 * n7: r=f; r=!r; l7: if (!r) goto F:
 * T: return TRUE;
 * F: return FALSE
 *
 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
 * to go directly to T. To accomplish this, we start from the last
 * entry in the program and work our way back. If the target of the entry
 * has the same "when_to_branch" then we could use that entry's target.
 * Doing this, the above would end up as:
 *
 * n1: r=a;       l1: if (!r) goto l4;
 * n2: r=b;       l2: if (!r) goto l4;
 * n3: r=c; r=!r; l3: if (r) goto T;
 * n4: r=g; r=!r; l4: if (r) goto T;
 * n5: r=d;       l5: if (r) goto T;
 * n6: r=e;       l6: if (!r) goto F;
 * n7: r=f; r=!r; l7: if (!r) goto F;
 * T: return TRUE
 * F: return FALSE
 *
 * In that same pass, if the "when_to_branch" doesn't match, we can simply
 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
 * where "l4: if (r) goto T;", then we can convert l2 to be:
 * "l2: if (!r) goto n5;".
 *
 * This will have the second pass give us:
 * n1: r=a;       l1: if (!r) goto n5;
 * n2: r=b;       l2: if (!r) goto n5;
 * n3: r=c; r=!r; l3: if (r) goto T;
 * n4: r=g; r=!r; l4: if (r) goto T;
 * n5: r=d;       l5: if (r) goto T
 * n6: r=e;       l6: if (!r) goto F;
 * n7: r=f; r=!r; l7: if (!r) goto F
 * T: return TRUE
 * F: return FALSE
 *
 * Notice, all the "l#" labels are no longer used, and they can now
 * be discarded.
 *
 * ** THIRD PASS **
 *
 * For the third pass we deal with the inverts. As they simply just
 * make the "when_to_branch" get inverted, a simple loop over the
 * program to that does: "when_to_branch ^= invert;" will do the
 * job, leaving us with:
 * n1: r=a; if (!r) goto n5;
 * n2: r=b; if (!r) goto n5;
 * n3: r=c: if (!r) goto T;
 * n4: r=g; if (!r) goto T;
 * n5: r=d; if (r) goto T
 * n6: r=e; if (!r) goto F;
 * n7: r=f; if (r) goto F
 * T: return TRUE
 * F: return FALSE
 *
 * As "r = a; if (!r) goto n5;" is obviously the same as
 * "if (!a) goto n5;" without doing anything we can interpret the
 * program as:
 * n1: if (!a) goto n5;
 * n2: if (!b) goto n5;
 * n3: if (!c) goto T;
 * n4: if (!g) goto T;
 * n5: if (d) goto T
 * n6: if (!e) goto F;
 * n7: if (f) goto F
 * T: return TRUE
 * F: return FALSE
 *
 * Since the inverts are discarded at the end, there's no reason to store
 * them in the program array (and waste memory). A separate array to hold
 * the inverts is used and freed at the end.
 */
static struct prog_entry *
predicate_parse(const char *str, int nr_parens, int nr_preds,
		parse_pred_fn parse_pred, void *data,
		struct filter_parse_error *pe)
{
	struct prog_entry *prog_stack;
	struct prog_entry *prog;
	const char *ptr = str;
	char *inverts = NULL;
	int *op_stack;
	int *top;
	int invert = 0;
	int ret = -ENOMEM;
	int len;
	int N = 0;
	int i;

	nr_preds += 2; /* For TRUE and FALSE */

	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
	if (!op_stack)
		return ERR_PTR(-ENOMEM);
	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
	if (!prog_stack) {
		parse_error(pe, -ENOMEM, 0);
		goto out_free;
	}
	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
	if (!inverts) {
		parse_error(pe, -ENOMEM, 0);
		goto out_free;
	}

	top = op_stack;
	prog = prog_stack;
	*top = 0;

	/* First pass */
	while (*ptr) {						/* #1 */
		const char *next = ptr++;

		if (isspace(*next))
			continue;

		switch (*next) {
		case '(':					/* #2 */
			if (top - op_stack > nr_parens) {
				ret = -EINVAL;
				goto out_free;
			}
			*(++top) = invert;
			continue;
		case '!':					/* #3 */
			if (!is_not(next))
				break;
			invert = !invert;
			continue;
		}

		if (N >= nr_preds) {
			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
			goto out_free;
		}

		inverts[N] = invert;				/* #4 */
		prog[N].target = N-1;

		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
		if (len < 0) {
			ret = len;
			goto out_free;
		}
		ptr = next + len;

		N++;

		ret = -1;
		while (1) {					/* #5 */
			next = ptr++;
			if (isspace(*next))
				continue;

			switch (*next) {
			case ')':
			case '\0':
				break;
			case '&':
			case '|':
				/* accepting only "&&" or "||" */
				if (next[1] == next[0]) {
					ptr++;
					break;
				}
				fallthrough;
			default:
				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
					    next - str);
				goto out_free;
			}

			invert = *top & INVERT;

			if (*top & PROCESS_AND) {		/* #7 */
				update_preds(prog, N - 1, invert);
				*top &= ~PROCESS_AND;
			}
			if (*next == '&') {			/* #8 */
				*top |= PROCESS_AND;
				break;
			}
			if (*top & PROCESS_OR) {		/* #9 */
				update_preds(prog, N - 1, !invert);
				*top &= ~PROCESS_OR;
			}
			if (*next == '|') {			/* #10 */
				*top |= PROCESS_OR;
				break;
			}
			if (!*next)				/* #11 */
				goto out;

			if (top == op_stack) {
				ret = -1;
				/* Too few '(' */
				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
				goto out_free;
			}
			top--;					/* #12 */
		}
	}
 out:
	if (top != op_stack) {
		/* Too many '(' */
		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
		goto out_free;
	}

	if (!N) {
		/* No program? */
		ret = -EINVAL;
		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
		goto out_free;
	}

	prog[N].pred = NULL;					/* #13 */
	prog[N].target = 1;		/* TRUE */
	prog[N+1].pred = NULL;
	prog[N+1].target = 0;		/* FALSE */
	prog[N-1].target = N;
	prog[N-1].when_to_branch = false;

	/* Second Pass */
	for (i = N-1 ; i--; ) {
		int target = prog[i].target;
		if (prog[i].when_to_branch == prog[target].when_to_branch)
			prog[i].target = prog[target].target;
	}

	/* Third Pass */
	for (i = 0; i < N; i++) {
		invert = inverts[i] ^ prog[i].when_to_branch;
		prog[i].when_to_branch = invert;
		/* Make sure the program always moves forward */
		if (WARN_ON(prog[i].target <= i)) {
			ret = -EINVAL;
			goto out_free;
		}
	}

	kfree(op_stack);
	kfree(inverts);
	return prog;
out_free:
	kfree(op_stack);
	kfree(inverts);
	if (prog_stack) {
		for (i = 0; prog_stack[i].pred; i++)
			kfree(prog_stack[i].pred);
		kfree(prog_stack);
	}
	return ERR_PTR(ret);
}

enum pred_cmp_types {
	PRED_CMP_TYPE_NOP,
	PRED_CMP_TYPE_LT,
	PRED_CMP_TYPE_LE,
	PRED_CMP_TYPE_GT,
	PRED_CMP_TYPE_GE,
	PRED_CMP_TYPE_BAND,
};

#define DEFINE_COMPARISON_PRED(type)					\
static int filter_pred_##type(struct filter_pred *pred, void *event)	\
{									\
	switch (pred->op) {						\
	case OP_LT: {							\
		type *addr = (type *)(event + pred->offset);		\
		type val = (type)pred->val;				\
		return *addr < val;					\
	}								\
	case OP_LE: {					\
		type *addr = (type *)(event + pred->offset);		\
		type val = (type)pred->val;				\
		return *addr <= val;					\
	}								\
	case OP_GT: {					\
		type *addr = (type *)(event + pred->offset);		\
		type val = (type)pred->val;				\
		return *addr > val;					\
	}								\
	case OP_GE: {					\
		type *addr = (type *)(event + pred->offset);		\
		type val = (type)pred->val;				\
		return *addr >= val;					\
	}								\
	case OP_BAND: {					\
		type *addr = (type *)(event + pred->offset);		\
		type val = (type)pred->val;				\
		return !!(*addr & val);					\
	}								\
	default:							\
		return 0;						\
	}								\
}

#define DEFINE_EQUALITY_PRED(size)					\
static int filter_pred_##size(struct filter_pred *pred, void *event)	\
{									\
	u##size *addr = (u##size *)(event + pred->offset);		\
	u##size val = (u##size)pred->val;				\
	int match;							\
									\
	match = (val == *addr) ^ pred->not;				\
									\
	return match;							\
}

DEFINE_COMPARISON_PRED(s64);
DEFINE_COMPARISON_PRED(u64);
DEFINE_COMPARISON_PRED(s32);
DEFINE_COMPARISON_PRED(u32);
DEFINE_COMPARISON_PRED(s16);
DEFINE_COMPARISON_PRED(u16);
DEFINE_COMPARISON_PRED(s8);
DEFINE_COMPARISON_PRED(u8);

DEFINE_EQUALITY_PRED(64);
DEFINE_EQUALITY_PRED(32);
DEFINE_EQUALITY_PRED(16);
DEFINE_EQUALITY_PRED(8);

/* user space strings temp buffer */
#define USTRING_BUF_SIZE	1024

struct ustring_buffer {
	char		buffer[USTRING_BUF_SIZE];
};

static __percpu struct ustring_buffer *ustring_per_cpu;

static __always_inline char *test_string(char *str)
{
	struct ustring_buffer *ubuf;
	char *kstr;

	if (!ustring_per_cpu)
		return NULL;

	ubuf = this_cpu_ptr(ustring_per_cpu);
	kstr = ubuf->buffer;

	/* For safety, do not trust the string pointer */
	if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
		return NULL;
	return kstr;
}

static __always_inline char *test_ustring(char *str)
{
	struct ustring_buffer *ubuf;
	char __user *ustr;
	char *kstr;

	if (!ustring_per_cpu)
		return NULL;

	ubuf = this_cpu_ptr(ustring_per_cpu);
	kstr = ubuf->buffer;

	/* user space address? */
	ustr = (char __user *)str;
	if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
		return NULL;

	return kstr;
}

/* Filter predicate for fixed sized arrays of characters */
static int filter_pred_string(struct filter_pred *pred, void *event)
{
	char *addr = (char *)(event + pred->offset);
	int cmp, match;

	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);

	match = cmp ^ pred->not;

	return match;
}

static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
{
	int cmp, match;
	int len;

	len = strlen(str) + 1;	/* including tailing '\0' */
	cmp = pred->regex.match(str, &pred->regex, len);

	match = cmp ^ pred->not;

	return match;
}
/* Filter predicate for char * pointers */
static int filter_pred_pchar(struct filter_pred *pred, void *event)
{
	char **addr = (char **)(event + pred->offset);
	char *str;

	str = test_string(*addr);
	if (!str)
		return 0;

	return filter_pchar(pred, str);
}

/* Filter predicate for char * pointers in user space*/
static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
{
	char **addr = (char **)(event + pred->offset);
	char *str;

	str = test_ustring(*addr);
	if (!str)
		return 0;

	return filter_pchar(pred, str);
}

/*
 * Filter predicate for dynamic sized arrays of characters.
 * These are implemented through a list of strings at the end
 * of the entry.
 * Also each of these strings have a field in the entry which
 * contains its offset from the beginning of the entry.
 * We have then first to get this field, dereference it
 * and add it to the address of the entry, and at last we have
 * the address of the string.
 */
static int filter_pred_strloc(struct filter_pred *pred, void *event)
{
	u32 str_item = *(u32 *)(event + pred->offset);
	int str_loc = str_item & 0xffff;
	int str_len = str_item >> 16;
	char *addr = (char *)(event + str_loc);
	int cmp, match;

	cmp = pred->regex.match(addr, &pred->regex, str_len);

	match = cmp ^ pred->not;

	return match;
}

/*
 * Filter predicate for relative dynamic sized arrays of characters.
 * These are implemented through a list of strings at the end
 * of the entry as same as dynamic string.
 * The difference is that the relative one records the location offset
 * from the field itself, not the event entry.
 */
static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
{
	u32 *item = (u32 *)(event + pred->offset);
	u32 str_item = *item;
	int str_loc = str_item & 0xffff;
	int str_len = str_item >> 16;
	char *addr = (char *)(&item[1]) + str_loc;
	int cmp, match;

	cmp = pred->regex.match(addr, &pred->regex, str_len);

	match = cmp ^ pred->not;

	return match;
}

/* Filter predicate for CPUs. */
static int filter_pred_cpu(struct filter_pred *pred, void *event)
{
	int cpu, cmp;

	cpu = raw_smp_processor_id();
	cmp = pred->val;

	switch (pred->op) {
	case OP_EQ:
		return cpu == cmp;
	case OP_NE:
		return cpu != cmp;
	case OP_LT:
		return cpu < cmp;
	case OP_LE:
		return cpu <= cmp;
	case OP_GT:
		return cpu > cmp;
	case OP_GE:
		return cpu >= cmp;
	default:
		return 0;
	}
}

/* Filter predicate for COMM. */
static int filter_pred_comm(struct filter_pred *pred, void *event)
{
	int cmp;

	cmp = pred->regex.match(current->comm, &pred->regex,
				TASK_COMM_LEN);
	return cmp ^ pred->not;
}

/* Filter predicate for functions. */
static int filter_pred_function(struct filter_pred *pred, void *event)
{
	unsigned long *addr = (unsigned long *)(event + pred->offset);
	unsigned long start = (unsigned long)pred->val;
	unsigned long end = (unsigned long)pred->val2;
	int ret = *addr >= start && *addr < end;

	return pred->op == OP_EQ ? ret : !ret;
}

/*
 * regex_match_foo - Basic regex callbacks
 *
 * @str: the string to be searched
 * @r:   the regex structure containing the pattern string
 * @len: the length of the string to be searched (including '\0')
 *
 * Note:
 * - @str might not be NULL-terminated if it's of type DYN_STRING
 *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
 */

static int regex_match_full(char *str, struct regex *r, int len)
{
	/* len of zero means str is dynamic and ends with '\0' */
	if (!len)
		return strcmp(str, r->pattern) == 0;

	return strncmp(str, r->pattern, len) == 0;
}

static int regex_match_front(char *str, struct regex *r, int len)
{
	if (len && len < r->len)
		return 0;

	return strncmp(str, r->pattern, r->len) == 0;
}

static int regex_match_middle(char *str, struct regex *r, int len)
{
	if (!len)
		return strstr(str, r->pattern) != NULL;

	return strnstr(str, r->pattern, len) != NULL;
}

static int regex_match_end(char *str, struct regex *r, int len)
{
	int strlen = len - 1;

	if (strlen >= r->len &&
	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
		return 1;
	return 0;
}

static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
{
	if (glob_match(r->pattern, str))
		return 1;
	return 0;
}

/**
 * filter_parse_regex - parse a basic regex
 * @buff:   the raw regex
 * @len:    length of the regex
 * @search: will point to the beginning of the string to compare
 * @not:    tell whether the match will have to be inverted
 *
 * This passes in a buffer containing a regex and this function will
 * set search to point to the search part of the buffer and
 * return the type of search it is (see enum above).
 * This does modify buff.
 *
 * Returns enum type.
 *  search returns the pointer to use for comparison.
 *  not returns 1 if buff started with a '!'
 *     0 otherwise.
 */
enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
{
	int type = MATCH_FULL;
	int i;

	if (buff[0] == '!') {
		*not = 1;
		buff++;
		len--;
	} else
		*not = 0;

	*search = buff;

	if (isdigit(buff[0]))
		return MATCH_INDEX;

	for (i = 0; i < len; i++) {
		if (buff[i] == '*') {
			if (!i) {
				type = MATCH_END_ONLY;
			} else if (i == len - 1) {
				if (type == MATCH_END_ONLY)
					type = MATCH_MIDDLE_ONLY;
				else
					type = MATCH_FRONT_ONLY;
				buff[i] = 0;
				break;
			} else {	/* pattern continues, use full glob */
				return MATCH_GLOB;
			}
		} else if (strchr("[?\\", buff[i])) {
			return MATCH_GLOB;
		}
	}
	if (buff[0] == '*')
		*search = buff + 1;

	return type;
}

static void filter_build_regex(struct filter_pred *pred)
{
	struct regex *r = &pred->regex;
	char *search;
	enum regex_type type = MATCH_FULL;

	if (pred->op == OP_GLOB) {
		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
		r->len = strlen(search);
		memmove(r->pattern, search, r->len+1);
	}

	switch (type) {
	/* MATCH_INDEX should not happen, but if it does, match full */
	case MATCH_INDEX:
	case MATCH_FULL:
		r->match = regex_match_full;
		break;
	case MATCH_FRONT_ONLY:
		r->match = regex_match_front;
		break;
	case MATCH_MIDDLE_ONLY:
		r->match = regex_match_middle;
		break;
	case MATCH_END_ONLY:
		r->match = regex_match_end;
		break;
	case MATCH_GLOB:
		r->match = regex_match_glob;
		break;
	}
}


#ifdef CONFIG_FTRACE_STARTUP_TEST
static int test_pred_visited_fn(struct filter_pred *pred, void *event);
#else
static int test_pred_visited_fn(struct filter_pred *pred, void *event)
{
	return 0;
}
#endif


static int filter_pred_fn_call(struct filter_pred *pred, void *event);

/* return 1 if event matches, 0 otherwise (discard) */
int filter_match_preds(struct event_filter *filter, void *rec)
{
	struct prog_entry *prog;
	int i;

	/* no filter is considered a match */
	if (!filter)
		return 1;

	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
	prog = rcu_dereference_raw(filter->prog);
	if (!prog)
		return 1;

	for (i = 0; prog[i].pred; i++) {
		struct filter_pred *pred = prog[i].pred;
		int match = filter_pred_fn_call(pred, rec);
		if (match == prog[i].when_to_branch)
			i = prog[i].target;
	}
	return prog[i].target;
}
EXPORT_SYMBOL_GPL(filter_match_preds);

static void remove_filter_string(struct event_filter *filter)
{
	if (!filter)
		return;

	kfree(filter->filter_string);
	filter->filter_string = NULL;
}

static void append_filter_err(struct trace_array *tr,
			      struct filter_parse_error *pe,
			      struct event_filter *filter)
{
	struct trace_seq *s;
	int pos = pe->lasterr_pos;
	char *buf;
	int len;

	if (WARN_ON(!filter->filter_string))
		return;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (!s)
		return;
	trace_seq_init(s);

	len = strlen(filter->filter_string);
	if (pos > len)
		pos = len;

	/* indexing is off by one */
	if (pos)
		pos++;

	trace_seq_puts(s, filter->filter_string);
	if (pe->lasterr > 0) {
		trace_seq_printf(s, "\n%*s", pos, "^");
		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
		tracing_log_err(tr, "event filter parse error",
				filter->filter_string, err_text,
				pe->lasterr, pe->lasterr_pos);
	} else {
		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
		tracing_log_err(tr, "event filter parse error",
				filter->filter_string, err_text,
				FILT_ERR_ERRNO, 0);
	}
	trace_seq_putc(s, 0);
	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
	if (buf) {
		kfree(filter->filter_string);
		filter->filter_string = buf;
	}
	kfree(s);
}

static inline struct event_filter *event_filter(struct trace_event_file *file)
{
	return file->filter;
}

/* caller must hold event_mutex */
void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
{
	struct event_filter *filter = event_filter(file);

	if (filter && filter->filter_string)
		trace_seq_printf(s, "%s\n", filter->filter_string);
	else
		trace_seq_puts(s, "none\n");
}

void print_subsystem_event_filter(struct event_subsystem *system,
				  struct trace_seq *s)
{
	struct event_filter *filter;

	mutex_lock(&event_mutex);
	filter = system->filter;
	if (filter && filter->filter_string)
		trace_seq_printf(s, "%s\n", filter->filter_string);
	else
		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
	mutex_unlock(&event_mutex);
}

static void free_prog(struct event_filter *filter)
{
	struct prog_entry *prog;
	int i;

	prog = rcu_access_pointer(filter->prog);
	if (!prog)
		return;

	for (i = 0; prog[i].pred; i++)
		kfree(prog[i].pred);
	kfree(prog);
}

static void filter_disable(struct trace_event_file *file)
{
	unsigned long old_flags = file->flags;

	file->flags &= ~EVENT_FILE_FL_FILTERED;

	if (old_flags != file->flags)
		trace_buffered_event_disable();
}

static void __free_filter(struct event_filter *filter)
{
	if (!filter)
		return;

	free_prog(filter);
	kfree(filter->filter_string);
	kfree(filter);
}

void free_event_filter(struct event_filter *filter)
{
	__free_filter(filter);
}

static inline void __remove_filter(struct trace_event_file *file)
{
	filter_disable(file);
	remove_filter_string(file->filter);
}

static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
					struct trace_array *tr)
{
	struct trace_event_file *file;

	list_for_each_entry(file, &tr->events, list) {
		if (file->system != dir)
			continue;
		__remove_filter(file);
	}
}

static inline void __free_subsystem_filter(struct trace_event_file *file)
{
	__free_filter(file->filter);
	file->filter = NULL;
}

static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
					  struct trace_array *tr)
{
	struct trace_event_file *file;

	list_for_each_entry(file, &tr->events, list) {
		if (file->system != dir)
			continue;
		__free_subsystem_filter(file);
	}
}

int filter_assign_type(const char *type)
{
	if (strstr(type, "__data_loc") && strstr(type, "char"))
		return FILTER_DYN_STRING;

	if (strstr(type, "__rel_loc") && strstr(type, "char"))
		return FILTER_RDYN_STRING;

	if (strchr(type, '[') && strstr(type, "char"))
		return FILTER_STATIC_STRING;

	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
		return FILTER_PTR_STRING;

	return FILTER_OTHER;
}

static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
						int field_size, int field_is_signed)
{
	enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
	int pred_func_index = -1;

	switch (op) {
	case OP_EQ:
	case OP_NE:
		break;
	default:
		if (WARN_ON_ONCE(op < PRED_FUNC_START))
			return fn;
		pred_func_index = op - PRED_FUNC_START;
		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
			return fn;
	}

	switch (field_size) {
	case 8:
		if (pred_func_index < 0)
			fn = FILTER_PRED_FN_64;
		else if (field_is_signed)
			fn = FILTER_PRED_FN_S64;
		else
			fn = FILTER_PRED_FN_U64;
		break;
	case 4:
		if (pred_func_index < 0)
			fn = FILTER_PRED_FN_32;
		else if (field_is_signed)
			fn = FILTER_PRED_FN_S32;
		else
			fn = FILTER_PRED_FN_U32;
		break;
	case 2:
		if (pred_func_index < 0)
			fn = FILTER_PRED_FN_16;
		else if (field_is_signed)
			fn = FILTER_PRED_FN_S16;
		else
			fn = FILTER_PRED_FN_U16;
		break;
	case 1:
		if (pred_func_index < 0)
			fn = FILTER_PRED_FN_8;
		else if (field_is_signed)
			fn = FILTER_PRED_FN_S8;
		else
			fn = FILTER_PRED_FN_U8;
		break;
	}

	return fn;
}


static int filter_pred_fn_call(struct filter_pred *pred, void *event)
{
	switch (pred->fn_num) {
	case FILTER_PRED_FN_64:
		return filter_pred_64(pred, event);
	case FILTER_PRED_FN_S64:
		return filter_pred_s64(pred, event);
	case FILTER_PRED_FN_U64:
		return filter_pred_u64(pred, event);
	case FILTER_PRED_FN_32:
		return filter_pred_32(pred, event);
	case FILTER_PRED_FN_S32:
		return filter_pred_s32(pred, event);
	case FILTER_PRED_FN_U32:
		return filter_pred_u32(pred, event);
	case FILTER_PRED_FN_16:
		return filter_pred_16(pred, event);
	case FILTER_PRED_FN_S16:
		return filter_pred_s16(pred, event);
	case FILTER_PRED_FN_U16:
		return filter_pred_u16(pred, event);
	case FILTER_PRED_FN_8:
		return filter_pred_8(pred, event);
	case FILTER_PRED_FN_S8:
		return filter_pred_s8(pred, event);
	case FILTER_PRED_FN_U8:
		return filter_pred_u8(pred, event);
	case FILTER_PRED_FN_COMM:
		return filter_pred_comm(pred, event);
	case FILTER_PRED_FN_STRING:
		return filter_pred_string(pred, event);
	case FILTER_PRED_FN_STRLOC:
		return filter_pred_strloc(pred, event);
	case FILTER_PRED_FN_STRRELLOC:
		return filter_pred_strrelloc(pred, event);
	case FILTER_PRED_FN_PCHAR_USER:
		return filter_pred_pchar_user(pred, event);
	case FILTER_PRED_FN_PCHAR:
		return filter_pred_pchar(pred, event);
	case FILTER_PRED_FN_CPU:
		return filter_pred_cpu(pred, event);
	case FILTER_PRED_FN_FUNCTION:
		return filter_pred_function(pred, event);
	case FILTER_PRED_TEST_VISITED:
		return test_pred_visited_fn(pred, event);
	default:
		return 0;
	}
}

/* Called when a predicate is encountered by predicate_parse() */
static int parse_pred(const char *str, void *data,
		      int pos, struct filter_parse_error *pe,
		      struct filter_pred **pred_ptr)
{
	struct trace_event_call *call = data;
	struct ftrace_event_field *field;
	struct filter_pred *pred = NULL;
	unsigned long offset;
	unsigned long size;
	unsigned long ip;
	char num_buf[24];	/* Big enough to hold an address */
	char *field_name;
	char *name;
	bool function = false;
	bool ustring = false;
	char q;
	u64 val;
	int len;
	int ret;
	int op;
	int s;
	int i = 0;

	/* First find the field to associate to */
	while (isspace(str[i]))
		i++;
	s = i;

	while (isalnum(str[i]) || str[i] == '_')
		i++;

	len = i - s;

	if (!len)
		return -1;

	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
	if (!field_name)
		return -ENOMEM;

	/* Make sure that the field exists */

	field = trace_find_event_field(call, field_name);
	kfree(field_name);
	if (!field) {
		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
		return -EINVAL;
	}

	/* See if the field is a user space string */
	if ((len = str_has_prefix(str + i, ".ustring"))) {
		ustring = true;
		i += len;
	}

	/* See if the field is a kernel function name */
	if ((len = str_has_prefix(str + i, ".function"))) {
		function = true;
		i += len;
	}

	while (isspace(str[i]))
		i++;

	/* Make sure this op is supported */
	for (op = 0; ops[op]; op++) {
		/* This is why '<=' must come before '<' in ops[] */
		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
			break;
	}

	if (!ops[op]) {
		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
		goto err_free;
	}

	i += strlen(ops[op]);

	while (isspace(str[i]))
		i++;

	s = i;

	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
	if (!pred)
		return -ENOMEM;

	pred->field = field;
	pred->offset = field->offset;
	pred->op = op;

	if (function) {
		/* The field must be the same size as long */
		if (field->size != sizeof(long)) {
			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
			goto err_free;
		}

		/* Function only works with '==' or '!=' and an unquoted string */
		switch (op) {
		case OP_NE:
		case OP_EQ:
			break;
		default:
			parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
			goto err_free;
		}

		if (isdigit(str[i])) {
			/* We allow 0xDEADBEEF */
			while (isalnum(str[i]))
				i++;

			len = i - s;
			/* 0xfeedfacedeadbeef is 18 chars max */
			if (len >= sizeof(num_buf)) {
				parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
				goto err_free;
			}

			strncpy(num_buf, str + s, len);
			num_buf[len] = 0;

			ret = kstrtoul(num_buf, 0, &ip);
			if (ret) {
				parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
				goto err_free;
			}
		} else {
			s = i;
			for (; str[i] && !isspace(str[i]); i++)
				;

			len = i - s;
			name = kmemdup_nul(str + s, len, GFP_KERNEL);
			if (!name)
				goto err_mem;
			ip = kallsyms_lookup_name(name);
			kfree(name);
			if (!ip) {
				parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
				goto err_free;
			}
		}

		/* Now find the function start and end address */
		if (!kallsyms_lookup_size_offset(ip, &size, &offset)) {
			parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
			goto err_free;
		}

		pred->fn_num = FILTER_PRED_FN_FUNCTION;
		pred->val = ip - offset;
		pred->val2 = pred->val + size;

	} else if (ftrace_event_is_function(call)) {
		/*
		 * Perf does things different with function events.
		 * It only allows an "ip" field, and expects a string.
		 * But the string does not need to be surrounded by quotes.
		 * If it is a string, the assigned function as a nop,
		 * (perf doesn't use it) and grab everything.
		 */
		if (strcmp(field->name, "ip") != 0) {
			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
			goto err_free;
		}
		pred->fn_num = FILTER_PRED_FN_NOP;

		/*
		 * Quotes are not required, but if they exist then we need
		 * to read them till we hit a matching one.
		 */
		if (str[i] == '\'' || str[i] == '"')
			q = str[i];
		else
			q = 0;

		for (i++; str[i]; i++) {
			if (q && str[i] == q)
				break;
			if (!q && (str[i] == ')' || str[i] == '&' ||
				   str[i] == '|'))
				break;
		}
		/* Skip quotes */
		if (q)
			s++;
		len = i - s;
		if (len >= MAX_FILTER_STR_VAL) {
			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
			goto err_free;
		}

		pred->regex.len = len;
		strncpy(pred->regex.pattern, str + s, len);
		pred->regex.pattern[len] = 0;

	/* This is either a string, or an integer */
	} else if (str[i] == '\'' || str[i] == '"') {
		char q = str[i];

		/* Make sure the op is OK for strings */
		switch (op) {
		case OP_NE:
			pred->not = 1;
			fallthrough;
		case OP_GLOB:
		case OP_EQ:
			break;
		default:
			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
			goto err_free;
		}

		/* Make sure the field is OK for strings */
		if (!is_string_field(field)) {
			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
			goto err_free;
		}

		for (i++; str[i]; i++) {
			if (str[i] == q)
				break;
		}
		if (!str[i]) {
			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
			goto err_free;
		}

		/* Skip quotes */
		s++;
		len = i - s;
		if (len >= MAX_FILTER_STR_VAL) {
			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
			goto err_free;
		}

		pred->regex.len = len;
		strncpy(pred->regex.pattern, str + s, len);
		pred->regex.pattern[len] = 0;

		filter_build_regex(pred);

		if (field->filter_type == FILTER_COMM) {
			pred->fn_num = FILTER_PRED_FN_COMM;

		} else if (field->filter_type == FILTER_STATIC_STRING) {
			pred->fn_num = FILTER_PRED_FN_STRING;
			pred->regex.field_len = field->size;

		} else if (field->filter_type == FILTER_DYN_STRING) {
			pred->fn_num = FILTER_PRED_FN_STRLOC;
		} else if (field->filter_type == FILTER_RDYN_STRING)
			pred->fn_num = FILTER_PRED_FN_STRRELLOC;
		else {

			if (!ustring_per_cpu) {
				/* Once allocated, keep it around for good */
				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
				if (!ustring_per_cpu)
					goto err_mem;
			}

			if (ustring)
				pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
			else
				pred->fn_num = FILTER_PRED_FN_PCHAR;
		}
		/* go past the last quote */
		i++;

	} else if (isdigit(str[i]) || str[i] == '-') {

		/* Make sure the field is not a string */
		if (is_string_field(field)) {
			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
			goto err_free;
		}

		if (op == OP_GLOB) {
			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
			goto err_free;
		}

		if (str[i] == '-')
			i++;

		/* We allow 0xDEADBEEF */
		while (isalnum(str[i]))
			i++;

		len = i - s;
		/* 0xfeedfacedeadbeef is 18 chars max */
		if (len >= sizeof(num_buf)) {
			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
			goto err_free;
		}

		strncpy(num_buf, str + s, len);
		num_buf[len] = 0;

		/* Make sure it is a value */
		if (field->is_signed)
			ret = kstrtoll(num_buf, 0, &val);
		else
			ret = kstrtoull(num_buf, 0, &val);
		if (ret) {
			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
			goto err_free;
		}

		pred->val = val;

		if (field->filter_type == FILTER_CPU)
			pred->fn_num = FILTER_PRED_FN_CPU;
		else {
			pred->fn_num = select_comparison_fn(pred->op, field->size,
							    field->is_signed);
			if (pred->op == OP_NE)
				pred->not = 1;
		}

	} else {
		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
		goto err_free;
	}

	*pred_ptr = pred;
	return i;

err_free:
	kfree(pred);
	return -EINVAL;
err_mem:
	kfree(pred);
	return -ENOMEM;
}

enum {
	TOO_MANY_CLOSE		= -1,
	TOO_MANY_OPEN		= -2,
	MISSING_QUOTE		= -3,
};

/*
 * Read the filter string once to calculate the number of predicates
 * as well as how deep the parentheses go.
 *
 * Returns:
 *   0 - everything is fine (err is undefined)
 *  -1 - too many ')'
 *  -2 - too many '('
 *  -3 - No matching quote
 */
static int calc_stack(const char *str, int *parens, int *preds, int *err)
{
	bool is_pred = false;
	int nr_preds = 0;
	int open = 1; /* Count the expression as "(E)" */
	int last_quote = 0;
	int max_open = 1;
	int quote = 0;
	int i;

	*err = 0;

	for (i = 0; str[i]; i++) {
		if (isspace(str[i]))
			continue;
		if (quote) {
			if (str[i] == quote)
			       quote = 0;
			continue;
		}

		switch (str[i]) {
		case '\'':
		case '"':
			quote = str[i];
			last_quote = i;
			break;
		case '|':
		case '&':
			if (str[i+1] != str[i])
				break;
			is_pred = false;
			continue;
		case '(':
			is_pred = false;
			open++;
			if (open > max_open)
				max_open = open;
			continue;
		case ')':
			is_pred = false;
			if (open == 1) {
				*err = i;
				return TOO_MANY_CLOSE;
			}
			open--;
			continue;
		}
		if (!is_pred) {
			nr_preds++;
			is_pred = true;
		}
	}

	if (quote) {
		*err = last_quote;
		return MISSING_QUOTE;
	}

	if (open != 1) {
		int level = open;

		/* find the bad open */
		for (i--; i; i--) {
			if (quote) {
				if (str[i] == quote)
					quote = 0;
				continue;
			}
			switch (str[i]) {
			case '(':
				if (level == open) {
					*err = i;
					return TOO_MANY_OPEN;
				}
				level--;
				break;
			case ')':
				level++;
				break;
			case '\'':
			case '"':
				quote = str[i];
				break;
			}
		}
		/* First character is the '(' with missing ')' */
		*err = 0;
		return TOO_MANY_OPEN;
	}

	/* Set the size of the required stacks */
	*parens = max_open;
	*preds = nr_preds;
	return 0;
}

static int process_preds(struct trace_event_call *call,
			 const char *filter_string,
			 struct event_filter *filter,
			 struct filter_parse_error *pe)
{
	struct prog_entry *prog;
	int nr_parens;
	int nr_preds;
	int index;
	int ret;

	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
	if (ret < 0) {
		switch (ret) {
		case MISSING_QUOTE:
			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
			break;
		case TOO_MANY_OPEN:
			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
			break;
		default:
			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
		}
		return ret;
	}

	if (!nr_preds)
		return -EINVAL;

	prog = predicate_parse(filter_string, nr_parens, nr_preds,
			       parse_pred, call, pe);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	rcu_assign_pointer(filter->prog, prog);
	return 0;
}

static inline void event_set_filtered_flag(struct trace_event_file *file)
{
	unsigned long old_flags = file->flags;

	file->flags |= EVENT_FILE_FL_FILTERED;

	if (old_flags != file->flags)
		trace_buffered_event_enable();
}

static inline void event_set_filter(struct trace_event_file *file,
				    struct event_filter *filter)
{
	rcu_assign_pointer(file->filter, filter);
}

static inline void event_clear_filter(struct trace_event_file *file)
{
	RCU_INIT_POINTER(file->filter, NULL);
}

struct filter_list {
	struct list_head	list;
	struct event_filter	*filter;
};

static int process_system_preds(struct trace_subsystem_dir *dir,
				struct trace_array *tr,
				struct filter_parse_error *pe,
				char *filter_string)
{
	struct trace_event_file *file;
	struct filter_list *filter_item;
	struct event_filter *filter = NULL;
	struct filter_list *tmp;
	LIST_HEAD(filter_list);
	bool fail = true;
	int err;

	list_for_each_entry(file, &tr->events, list) {

		if (file->system != dir)
			continue;

		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
		if (!filter)
			goto fail_mem;

		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
		if (!filter->filter_string)
			goto fail_mem;

		err = process_preds(file->event_call, filter_string, filter, pe);
		if (err) {
			filter_disable(file);
			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
			append_filter_err(tr, pe, filter);
		} else
			event_set_filtered_flag(file);


		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
		if (!filter_item)
			goto fail_mem;

		list_add_tail(&filter_item->list, &filter_list);
		/*
		 * Regardless of if this returned an error, we still
		 * replace the filter for the call.
		 */
		filter_item->filter = event_filter(file);
		event_set_filter(file, filter);
		filter = NULL;

		fail = false;
	}

	if (fail)
		goto fail;

	/*
	 * The calls can still be using the old filters.
	 * Do a synchronize_rcu() and to ensure all calls are
	 * done with them before we free them.
	 */
	tracepoint_synchronize_unregister();
	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
		__free_filter(filter_item->filter);
		list_del(&filter_item->list);
		kfree(filter_item);
	}
	return 0;
 fail:
	/* No call succeeded */
	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
		list_del(&filter_item->list);
		kfree(filter_item);
	}
	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
	return -EINVAL;
 fail_mem:
	__free_filter(filter);
	/* If any call succeeded, we still need to sync */
	if (!fail)
		tracepoint_synchronize_unregister();
	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
		__free_filter(filter_item->filter);
		list_del(&filter_item->list);
		kfree(filter_item);
	}
	return -ENOMEM;
}

static int create_filter_start(char *filter_string, bool set_str,
			       struct filter_parse_error **pse,
			       struct event_filter **filterp)
{
	struct event_filter *filter;
	struct filter_parse_error *pe = NULL;
	int err = 0;

	if (WARN_ON_ONCE(*pse || *filterp))
		return -EINVAL;

	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
	if (filter && set_str) {
		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
		if (!filter->filter_string)
			err = -ENOMEM;
	}

	pe = kzalloc(sizeof(*pe), GFP_KERNEL);

	if (!filter || !pe || err) {
		kfree(pe);
		__free_filter(filter);
		return -ENOMEM;
	}

	/* we're committed to creating a new filter */
	*filterp = filter;
	*pse = pe;

	return 0;
}

static void create_filter_finish(struct filter_parse_error *pe)
{
	kfree(pe);
}

/**
 * create_filter - create a filter for a trace_event_call
 * @tr: the trace array associated with these events
 * @call: trace_event_call to create a filter for
 * @filter_string: filter string
 * @set_str: remember @filter_str and enable detailed error in filter
 * @filterp: out param for created filter (always updated on return)
 *           Must be a pointer that references a NULL pointer.
 *
 * Creates a filter for @call with @filter_str.  If @set_str is %true,
 * @filter_str is copied and recorded in the new filter.
 *
 * On success, returns 0 and *@filterp points to the new filter.  On
 * failure, returns -errno and *@filterp may point to %NULL or to a new
 * filter.  In the latter case, the returned filter contains error
 * information if @set_str is %true and the caller is responsible for
 * freeing it.
 */
static int create_filter(struct trace_array *tr,
			 struct trace_event_call *call,
			 char *filter_string, bool set_str,
			 struct event_filter **filterp)
{
	struct filter_parse_error *pe = NULL;
	int err;

	/* filterp must point to NULL */
	if (WARN_ON(*filterp))
		*filterp = NULL;

	err = create_filter_start(filter_string, set_str, &pe, filterp);
	if (err)
		return err;

	err = process_preds(call, filter_string, *filterp, pe);
	if (err && set_str)
		append_filter_err(tr, pe, *filterp);
	create_filter_finish(pe);

	return err;
}

int create_event_filter(struct trace_array *tr,
			struct trace_event_call *call,
			char *filter_str, bool set_str,
			struct event_filter **filterp)
{
	return create_filter(tr, call, filter_str, set_str, filterp);
}

/**
 * create_system_filter - create a filter for an event subsystem
 * @dir: the descriptor for the subsystem directory
 * @filter_str: filter string
 * @filterp: out param for created filter (always updated on return)
 *
 * Identical to create_filter() except that it creates a subsystem filter
 * and always remembers @filter_str.
 */
static int create_system_filter(struct trace_subsystem_dir *dir,
				char *filter_str, struct event_filter **filterp)
{
	struct filter_parse_error *pe = NULL;
	int err;

	err = create_filter_start(filter_str, true, &pe, filterp);
	if (!err) {
		err = process_system_preds(dir, dir->tr, pe, filter_str);
		if (!err) {
			/* System filters just show a default message */
			kfree((*filterp)->filter_string);
			(*filterp)->filter_string = NULL;
		} else {
			append_filter_err(dir->tr, pe, *filterp);
		}
	}
	create_filter_finish(pe);

	return err;
}

/* caller must hold event_mutex */
int apply_event_filter(struct trace_event_file *file, char *filter_string)
{
	struct trace_event_call *call = file->event_call;
	struct event_filter *filter = NULL;
	int err;

	if (!strcmp(strstrip(filter_string), "0")) {
		filter_disable(file);
		filter = event_filter(file);

		if (!filter)
			return 0;

		event_clear_filter(file);

		/* Make sure the filter is not being used */
		tracepoint_synchronize_unregister();
		__free_filter(filter);

		return 0;
	}

	err = create_filter(file->tr, call, filter_string, true, &filter);

	/*
	 * Always swap the call filter with the new filter
	 * even if there was an error. If there was an error
	 * in the filter, we disable the filter and show the error
	 * string
	 */
	if (filter) {
		struct event_filter *tmp;

		tmp = event_filter(file);
		if (!err)
			event_set_filtered_flag(file);
		else
			filter_disable(file);

		event_set_filter(file, filter);

		if (tmp) {
			/* Make sure the call is done with the filter */
			tracepoint_synchronize_unregister();
			__free_filter(tmp);
		}
	}

	return err;
}

int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
				 char *filter_string)
{
	struct event_subsystem *system = dir->subsystem;
	struct trace_array *tr = dir->tr;
	struct event_filter *filter = NULL;
	int err = 0;

	mutex_lock(&event_mutex);

	/* Make sure the system still has events */
	if (!dir->nr_events) {
		err = -ENODEV;
		goto out_unlock;
	}

	if (!strcmp(strstrip(filter_string), "0")) {
		filter_free_subsystem_preds(dir, tr);
		remove_filter_string(system->filter);
		filter = system->filter;
		system->filter = NULL;
		/* Ensure all filters are no longer used */
		tracepoint_synchronize_unregister();
		filter_free_subsystem_filters(dir, tr);
		__free_filter(filter);
		goto out_unlock;
	}

	err = create_system_filter(dir, filter_string, &filter);
	if (filter) {
		/*
		 * No event actually uses the system filter
		 * we can free it without synchronize_rcu().
		 */
		__free_filter(system->filter);
		system->filter = filter;
	}
out_unlock:
	mutex_unlock(&event_mutex);

	return err;
}

#ifdef CONFIG_PERF_EVENTS

void ftrace_profile_free_filter(struct perf_event *event)
{
	struct event_filter *filter = event->filter;

	event->filter = NULL;
	__free_filter(filter);
}

struct function_filter_data {
	struct ftrace_ops *ops;
	int first_filter;
	int first_notrace;
};

#ifdef CONFIG_FUNCTION_TRACER
static char **
ftrace_function_filter_re(char *buf, int len, int *count)
{
	char *str, **re;

	str = kstrndup(buf, len, GFP_KERNEL);
	if (!str)
		return NULL;

	/*
	 * The argv_split function takes white space
	 * as a separator, so convert ',' into spaces.
	 */
	strreplace(str, ',', ' ');

	re = argv_split(GFP_KERNEL, str, count);
	kfree(str);
	return re;
}

static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
				      int reset, char *re, int len)
{
	int ret;

	if (filter)
		ret = ftrace_set_filter(ops, re, len, reset);
	else
		ret = ftrace_set_notrace(ops, re, len, reset);

	return ret;
}

static int __ftrace_function_set_filter(int filter, char *buf, int len,
					struct function_filter_data *data)
{
	int i, re_cnt, ret = -EINVAL;
	int *reset;
	char **re;

	reset = filter ? &data->first_filter : &data->first_notrace;

	/*
	 * The 'ip' field could have multiple filters set, separated
	 * either by space or comma. We first cut the filter and apply
	 * all pieces separately.
	 */
	re = ftrace_function_filter_re(buf, len, &re_cnt);
	if (!re)
		return -EINVAL;

	for (i = 0; i < re_cnt; i++) {
		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
						 re[i], strlen(re[i]));
		if (ret)
			break;

		if (*reset)
			*reset = 0;
	}

	argv_free(re);
	return ret;
}

static int ftrace_function_check_pred(struct filter_pred *pred)
{
	struct ftrace_event_field *field = pred->field;

	/*
	 * Check the predicate for function trace, verify:
	 *  - only '==' and '!=' is used
	 *  - the 'ip' field is used
	 */
	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
		return -EINVAL;

	if (strcmp(field->name, "ip"))
		return -EINVAL;

	return 0;
}

static int ftrace_function_set_filter_pred(struct filter_pred *pred,
					   struct function_filter_data *data)
{
	int ret;

	/* Checking the node is valid for function trace. */
	ret = ftrace_function_check_pred(pred);
	if (ret)
		return ret;

	return __ftrace_function_set_filter(pred->op == OP_EQ,
					    pred->regex.pattern,
					    pred->regex.len,
					    data);
}

static bool is_or(struct prog_entry *prog, int i)
{
	int target;

	/*
	 * Only "||" is allowed for function events, thus,
	 * all true branches should jump to true, and any
	 * false branch should jump to false.
	 */
	target = prog[i].target + 1;
	/* True and false have NULL preds (all prog entries should jump to one */
	if (prog[target].pred)
		return false;

	/* prog[target].target is 1 for TRUE, 0 for FALSE */
	return prog[i].when_to_branch == prog[target].target;
}

static int ftrace_function_set_filter(struct perf_event *event,
				      struct event_filter *filter)
{
	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
						lockdep_is_held(&event_mutex));
	struct function_filter_data data = {
		.first_filter  = 1,
		.first_notrace = 1,
		.ops           = &event->ftrace_ops,
	};
	int i;

	for (i = 0; prog[i].pred; i++) {
		struct filter_pred *pred = prog[i].pred;

		if (!is_or(prog, i))
			return -EINVAL;

		if (ftrace_function_set_filter_pred(pred, &data) < 0)
			return -EINVAL;
	}
	return 0;
}
#else
static int ftrace_function_set_filter(struct perf_event *event,
				      struct event_filter *filter)
{
	return -ENODEV;
}
#endif /* CONFIG_FUNCTION_TRACER */

int ftrace_profile_set_filter(struct perf_event *event, int event_id,
			      char *filter_str)
{
	int err;
	struct event_filter *filter = NULL;
	struct trace_event_call *call;

	mutex_lock(&event_mutex);

	call = event->tp_event;

	err = -EINVAL;
	if (!call)
		goto out_unlock;

	err = -EEXIST;
	if (event->filter)
		goto out_unlock;

	err = create_filter(NULL, call, filter_str, false, &filter);
	if (err)
		goto free_filter;

	if (ftrace_event_is_function(call))
		err = ftrace_function_set_filter(event, filter);
	else
		event->filter = filter;

free_filter:
	if (err || ftrace_event_is_function(call))
		__free_filter(filter);

out_unlock:
	mutex_unlock(&event_mutex);

	return err;
}

#endif /* CONFIG_PERF_EVENTS */

#ifdef CONFIG_FTRACE_STARTUP_TEST

#include <linux/types.h>
#include <linux/tracepoint.h>

#define CREATE_TRACE_POINTS
#include "trace_events_filter_test.h"

#define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
{ \
	.filter = FILTER, \
	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
		    .e = ve, .f = vf, .g = vg, .h = vh }, \
	.match  = m, \
	.not_visited = nvisit, \
}
#define YES 1
#define NO  0

static struct test_filter_data_t {
	char *filter;
	struct trace_event_raw_ftrace_test_filter rec;
	int match;
	char *not_visited;
} test_filter_data[] = {
#define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
	       "e == 1 && f == 1 && g == 1 && h == 1"
	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
#undef FILTER
#define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
	       "e == 1 || f == 1 || g == 1 || h == 1"
	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
#undef FILTER
#define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
#undef FILTER
#define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
#undef FILTER
#define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
#undef FILTER
#define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
#undef FILTER
#define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
#undef FILTER
#define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
};

#undef DATA_REC
#undef FILTER
#undef YES
#undef NO

#define DATA_CNT ARRAY_SIZE(test_filter_data)

static int test_pred_visited;

static int test_pred_visited_fn(struct filter_pred *pred, void *event)
{
	struct ftrace_event_field *field = pred->field;

	test_pred_visited = 1;
	printk(KERN_INFO "\npred visited %s\n", field->name);
	return 1;
}

static void update_pred_fn(struct event_filter *filter, char *fields)
{
	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
						lockdep_is_held(&event_mutex));
	int i;

	for (i = 0; prog[i].pred; i++) {
		struct filter_pred *pred = prog[i].pred;
		struct ftrace_event_field *field = pred->field;

		WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);

		if (!field) {
			WARN_ONCE(1, "all leafs should have field defined %d", i);
			continue;
		}

		if (!strchr(fields, *field->name))
			continue;

		pred->fn_num = FILTER_PRED_TEST_VISITED;
	}
}

static __init int ftrace_test_event_filter(void)
{
	int i;

	printk(KERN_INFO "Testing ftrace filter: ");

	for (i = 0; i < DATA_CNT; i++) {
		struct event_filter *filter = NULL;
		struct test_filter_data_t *d = &test_filter_data[i];
		int err;

		err = create_filter(NULL, &event_ftrace_test_filter,
				    d->filter, false, &filter);
		if (err) {
			printk(KERN_INFO
			       "Failed to get filter for '%s', err %d\n",
			       d->filter, err);
			__free_filter(filter);
			break;
		}

		/* Needed to dereference filter->prog */
		mutex_lock(&event_mutex);
		/*
		 * The preemption disabling is not really needed for self
		 * tests, but the rcu dereference will complain without it.
		 */
		preempt_disable();
		if (*d->not_visited)
			update_pred_fn(filter, d->not_visited);

		test_pred_visited = 0;
		err = filter_match_preds(filter, &d->rec);
		preempt_enable();

		mutex_unlock(&event_mutex);

		__free_filter(filter);

		if (test_pred_visited) {
			printk(KERN_INFO
			       "Failed, unwanted pred visited for filter %s\n",
			       d->filter);
			break;
		}

		if (err != d->match) {
			printk(KERN_INFO
			       "Failed to match filter '%s', expected %d\n",
			       d->filter, d->match);
			break;
		}
	}

	if (i == DATA_CNT)
		printk(KERN_CONT "OK\n");

	return 0;
}

late_initcall(ftrace_test_event_filter);

#endif /* CONFIG_FTRACE_STARTUP_TEST */