Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 | // SPDX-License-Identifier: GPL-2.0+ /* * vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter * * Copyright (C) 2013-2014 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) */ #include <linux/device.h> #include <media/v4l2-subdev.h> #include "vsp1.h" #include "vsp1_dl.h" #include "vsp1_pipe.h" #include "vsp1_rwpf.h" #include "vsp1_video.h" #define RPF_MAX_WIDTH 8190 #define RPF_MAX_HEIGHT 8190 /* Pre extended display list command data structure. */ struct vsp1_extcmd_auto_fld_body { u32 top_y0; u32 bottom_y0; u32 top_c0; u32 bottom_c0; u32 top_c1; u32 bottom_c1; u32 reserved0; u32 reserved1; } __packed; /* ----------------------------------------------------------------------------- * Device Access */ static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf, struct vsp1_dl_body *dlb, u32 reg, u32 data) { vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET, data); } /* ----------------------------------------------------------------------------- * V4L2 Subdevice Operations */ static const struct v4l2_subdev_ops rpf_ops = { .pad = &vsp1_rwpf_pad_ops, }; /* ----------------------------------------------------------------------------- * VSP1 Entity Operations */ static void rpf_configure_stream(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl, struct vsp1_dl_body *dlb) { struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); const struct vsp1_format_info *fmtinfo = rpf->fmtinfo; const struct v4l2_pix_format_mplane *format = &rpf->format; const struct v4l2_mbus_framefmt *source_format; const struct v4l2_mbus_framefmt *sink_format; unsigned int left = 0; unsigned int top = 0; u32 pstride; u32 infmt; /* Stride */ pstride = format->plane_fmt[0].bytesperline << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT; if (format->num_planes > 1) pstride |= format->plane_fmt[1].bytesperline << VI6_RPF_SRCM_PSTRIDE_C_SHIFT; /* * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole * of pstride by 2 is conveniently OK here as we are multiplying both * values. */ if (pipe->interlaced) pstride *= 2; vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride); /* Format */ sink_format = vsp1_entity_get_pad_format(&rpf->entity, rpf->entity.config, RWPF_PAD_SINK); source_format = vsp1_entity_get_pad_format(&rpf->entity, rpf->entity.config, RWPF_PAD_SOURCE); infmt = VI6_RPF_INFMT_CIPM | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT); if (fmtinfo->swap_yc) infmt |= VI6_RPF_INFMT_SPYCS; if (fmtinfo->swap_uv) infmt |= VI6_RPF_INFMT_SPUVS; if (sink_format->code != source_format->code) infmt |= VI6_RPF_INFMT_CSC; vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt); vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap); if (entity->vsp1->info->gen == 4) { u32 ext_infmt0; u32 ext_infmt1; u32 ext_infmt2; switch (fmtinfo->fourcc) { case V4L2_PIX_FMT_RGBX1010102: ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10; ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 0); ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 0); break; case V4L2_PIX_FMT_RGBA1010102: ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10; ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 30); ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2); break; case V4L2_PIX_FMT_ARGB2101010: ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10; ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(2, 12, 22, 0); ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2); break; case V4L2_PIX_FMT_Y210: ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B | VI6_RPF_EXT_INFMT0_IPBD_Y_10 | VI6_RPF_EXT_INFMT0_IPBD_C_10; ext_infmt1 = 0x0; ext_infmt2 = 0x0; break; case V4L2_PIX_FMT_Y212: ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B | VI6_RPF_EXT_INFMT0_IPBD_Y_12 | VI6_RPF_EXT_INFMT0_IPBD_C_12; ext_infmt1 = 0x0; ext_infmt2 = 0x0; break; default: ext_infmt0 = 0; ext_infmt1 = 0; ext_infmt2 = 0; break; } vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT0, ext_infmt0); vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT1, ext_infmt1); vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT2, ext_infmt2); } /* Output location. */ if (pipe->brx) { const struct v4l2_rect *compose; compose = vsp1_entity_get_pad_selection(pipe->brx, pipe->brx->config, rpf->brx_input, V4L2_SEL_TGT_COMPOSE); left = compose->left; top = compose->top; } if (pipe->interlaced) top /= 2; vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC, (left << VI6_RPF_LOC_HCOORD_SHIFT) | (top << VI6_RPF_LOC_VCOORD_SHIFT)); /* * On Gen2 use the alpha channel (extended to 8 bits) when available or * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control * otherwise. * * The Gen3+ RPF has extended alpha capability and can both multiply the * alpha channel by a fixed global alpha value, and multiply the pixel * components to convert the input to premultiplied alpha. * * As alpha premultiplication is available in the BRx for both Gen2 and * Gen3+ we handle it there and use the Gen3 alpha multiplier for global * alpha multiplication only. This however prevents conversion to * premultiplied alpha if no BRx is present in the pipeline. If that use * case turns out to be useful we will revisit the implementation (for * Gen3 only). * * We enable alpha multiplication on Gen3+ using the fixed alpha value * set through the V4L2_CID_ALPHA_COMPONENT control when the input * contains an alpha channel. On Gen2 the global alpha is ignored in * that case. * * In all cases, disable color keying. */ vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT | (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED : VI6_RPF_ALPH_SEL_ASEL_FIXED)); if (entity->vsp1->info->gen >= 3) { u32 mult; if (fmtinfo->alpha) { /* * When the input contains an alpha channel enable the * alpha multiplier. If the input is premultiplied we * need to multiply both the alpha channel and the pixel * components by the global alpha value to keep them * premultiplied. Otherwise multiply the alpha channel * only. */ bool premultiplied = format->flags & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA; mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO | (premultiplied ? VI6_RPF_MULT_ALPHA_P_MMD_RATIO : VI6_RPF_MULT_ALPHA_P_MMD_NONE); } else { /* * When the input doesn't contain an alpha channel the * global alpha value is applied in the unpacking unit, * the alpha multiplier isn't needed and must be * disabled. */ mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE | VI6_RPF_MULT_ALPHA_P_MMD_NONE; } rpf->mult_alpha = mult; } vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0); vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0); } static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf, struct vsp1_dl_list *dl) { const struct v4l2_pix_format_mplane *format = &rpf->format; struct vsp1_dl_ext_cmd *cmd; struct vsp1_extcmd_auto_fld_body *auto_fld; u32 offset_y, offset_c; cmd = vsp1_dl_get_pre_cmd(dl); if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd")) return; /* Re-index our auto_fld to match the current RPF. */ auto_fld = cmd->data; auto_fld = &auto_fld[rpf->entity.index]; auto_fld->top_y0 = rpf->mem.addr[0]; auto_fld->top_c0 = rpf->mem.addr[1]; auto_fld->top_c1 = rpf->mem.addr[2]; offset_y = format->plane_fmt[0].bytesperline; offset_c = format->plane_fmt[1].bytesperline; auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y; auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c; auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c; cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index); } static void rpf_configure_frame(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl, struct vsp1_dl_body *dlb) { struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET, rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT); vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha | (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT)); vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha); } static void rpf_configure_partition(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl, struct vsp1_dl_body *dlb) { struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); struct vsp1_rwpf_memory mem = rpf->mem; struct vsp1_device *vsp1 = rpf->entity.vsp1; const struct vsp1_format_info *fmtinfo = rpf->fmtinfo; const struct v4l2_pix_format_mplane *format = &rpf->format; struct v4l2_rect crop; /* * Source size and crop offsets. * * The crop offsets correspond to the location of the crop * rectangle top left corner in the plane buffer. Only two * offsets are needed, as planes 2 and 3 always have identical * strides. */ crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config); /* * Partition Algorithm Control * * The partition algorithm can split this frame into multiple * slices. We must scale our partition window based on the pipe * configuration to match the destination partition window. * To achieve this, we adjust our crop to provide a 'sub-crop' * matching the expected partition window. Only 'left' and * 'width' need to be adjusted. */ if (pipe->partitions > 1) { crop.width = pipe->partition->rpf.width; crop.left += pipe->partition->rpf.left; } if (pipe->interlaced) { crop.height = round_down(crop.height / 2, fmtinfo->vsub); crop.top = round_down(crop.top / 2, fmtinfo->vsub); } vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE, (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) | (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT)); vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE, (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) | (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT)); mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline + crop.left * fmtinfo->bpp[0] / 8; if (format->num_planes > 1) { unsigned int bpl = format->plane_fmt[1].bytesperline; unsigned int offset; offset = crop.top / fmtinfo->vsub * bpl + crop.left / fmtinfo->hsub * fmtinfo->bpp[1] / 8; mem.addr[1] += offset; mem.addr[2] += offset; } /* * On Gen3+ hardware the SPUVS bit has no effect on 3-planar * formats. Swap the U and V planes manually in that case. */ if (vsp1->info->gen >= 3 && format->num_planes == 3 && fmtinfo->swap_uv) swap(mem.addr[1], mem.addr[2]); /* * Interlaced pipelines will use the extended pre-cmd to process * SRCM_ADDR_{Y,C0,C1}. */ if (pipe->interlaced) { vsp1_rpf_configure_autofld(rpf, dl); } else { vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]); vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]); vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]); } } static void rpf_partition(struct vsp1_entity *entity, struct vsp1_pipeline *pipe, struct vsp1_partition *partition, unsigned int partition_idx, struct vsp1_partition_window *window) { partition->rpf = *window; } static const struct vsp1_entity_operations rpf_entity_ops = { .configure_stream = rpf_configure_stream, .configure_frame = rpf_configure_frame, .configure_partition = rpf_configure_partition, .partition = rpf_partition, }; /* ----------------------------------------------------------------------------- * Initialization and Cleanup */ struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index) { struct vsp1_rwpf *rpf; char name[6]; int ret; rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL); if (rpf == NULL) return ERR_PTR(-ENOMEM); rpf->max_width = RPF_MAX_WIDTH; rpf->max_height = RPF_MAX_HEIGHT; rpf->entity.ops = &rpf_entity_ops; rpf->entity.type = VSP1_ENTITY_RPF; rpf->entity.index = index; sprintf(name, "rpf.%u", index); ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops, MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER); if (ret < 0) return ERR_PTR(ret); /* Initialize the control handler. */ ret = vsp1_rwpf_init_ctrls(rpf, 0); if (ret < 0) { dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n", index); goto error; } v4l2_ctrl_handler_setup(&rpf->ctrls); return rpf; error: vsp1_entity_destroy(&rpf->entity); return ERR_PTR(ret); } |