Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 | /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Generation of main entry point for the guest, exception handling. * * Copyright (C) 2012 MIPS Technologies, Inc. * Authors: Sanjay Lal <sanjayl@kymasys.com> * * Copyright (C) 2016 Imagination Technologies Ltd. */ #include <linux/kvm_host.h> #include <linux/log2.h> #include <asm/mmu_context.h> #include <asm/msa.h> #include <asm/setup.h> #include <asm/tlbex.h> #include <asm/uasm.h> /* Register names */ #define ZERO 0 #define AT 1 #define V0 2 #define V1 3 #define A0 4 #define A1 5 #if _MIPS_SIM == _MIPS_SIM_ABI32 #define T0 8 #define T1 9 #define T2 10 #define T3 11 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */ #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 #define T0 12 #define T1 13 #define T2 14 #define T3 15 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */ #define S0 16 #define S1 17 #define T9 25 #define K0 26 #define K1 27 #define GP 28 #define SP 29 #define RA 31 /* Some CP0 registers */ #define C0_PWBASE 5, 5 #define C0_HWRENA 7, 0 #define C0_BADVADDR 8, 0 #define C0_BADINSTR 8, 1 #define C0_BADINSTRP 8, 2 #define C0_PGD 9, 7 #define C0_ENTRYHI 10, 0 #define C0_GUESTCTL1 10, 4 #define C0_STATUS 12, 0 #define C0_GUESTCTL0 12, 6 #define C0_CAUSE 13, 0 #define C0_EPC 14, 0 #define C0_EBASE 15, 1 #define C0_CONFIG5 16, 5 #define C0_DDATA_LO 28, 3 #define C0_ERROREPC 30, 0 #define CALLFRAME_SIZ 32 #ifdef CONFIG_64BIT #define ST0_KX_IF_64 ST0_KX #else #define ST0_KX_IF_64 0 #endif static unsigned int scratch_vcpu[2] = { C0_DDATA_LO }; static unsigned int scratch_tmp[2] = { C0_ERROREPC }; enum label_id { label_fpu_1 = 1, label_msa_1, label_return_to_host, label_kernel_asid, label_exit_common, }; UASM_L_LA(_fpu_1) UASM_L_LA(_msa_1) UASM_L_LA(_return_to_host) UASM_L_LA(_kernel_asid) UASM_L_LA(_exit_common) static void *kvm_mips_build_enter_guest(void *addr); static void *kvm_mips_build_ret_from_exit(void *addr); static void *kvm_mips_build_ret_to_guest(void *addr); static void *kvm_mips_build_ret_to_host(void *addr); /* * The version of this function in tlbex.c uses current_cpu_type(), but for KVM * we assume symmetry. */ static int c0_kscratch(void) { return 31; } /** * kvm_mips_entry_setup() - Perform global setup for entry code. * * Perform global setup for entry code, such as choosing a scratch register. * * Returns: 0 on success. * -errno on failure. */ int kvm_mips_entry_setup(void) { /* * We prefer to use KScratchN registers if they are available over the * defaults above, which may not work on all cores. */ unsigned int kscratch_mask = cpu_data[0].kscratch_mask; if (pgd_reg != -1) kscratch_mask &= ~BIT(pgd_reg); /* Pick a scratch register for storing VCPU */ if (kscratch_mask) { scratch_vcpu[0] = c0_kscratch(); scratch_vcpu[1] = ffs(kscratch_mask) - 1; kscratch_mask &= ~BIT(scratch_vcpu[1]); } /* Pick a scratch register to use as a temp for saving state */ if (kscratch_mask) { scratch_tmp[0] = c0_kscratch(); scratch_tmp[1] = ffs(kscratch_mask) - 1; kscratch_mask &= ~BIT(scratch_tmp[1]); } return 0; } static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp, unsigned int frame) { /* Save the VCPU scratch register value in cp0_epc of the stack frame */ UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); /* Save the temp scratch register value in cp0_cause of stack frame */ if (scratch_tmp[0] == c0_kscratch()) { UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); } } static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp, unsigned int frame) { /* * Restore host scratch register values saved by * kvm_mips_build_save_scratch(). */ UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); if (scratch_tmp[0] == c0_kscratch()) { UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); } } /** * build_set_exc_base() - Assemble code to write exception base address. * @p: Code buffer pointer. * @reg: Source register (generated code may set WG bit in @reg). * * Assemble code to modify the exception base address in the EBase register, * using the appropriately sized access and setting the WG bit if necessary. */ static inline void build_set_exc_base(u32 **p, unsigned int reg) { if (cpu_has_ebase_wg) { /* Set WG so that all the bits get written */ uasm_i_ori(p, reg, reg, MIPS_EBASE_WG); UASM_i_MTC0(p, reg, C0_EBASE); } else { uasm_i_mtc0(p, reg, C0_EBASE); } } /** * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU. * @addr: Address to start writing code. * * Assemble the start of the vcpu_run function to run a guest VCPU. The function * conforms to the following prototype: * * int vcpu_run(struct kvm_vcpu *vcpu); * * The exit from the guest and return to the caller is handled by the code * generated by kvm_mips_build_ret_to_host(). * * Returns: Next address after end of written function. */ void *kvm_mips_build_vcpu_run(void *addr) { u32 *p = addr; unsigned int i; /* * A0: vcpu */ /* k0/k1 not being used in host kernel context */ UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs)); for (i = 16; i < 32; ++i) { if (i == 24) i = 28; UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1); } /* Save host status */ uasm_i_mfc0(&p, V0, C0_STATUS); UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1); /* Save scratch registers, will be used to store pointer to vcpu etc */ kvm_mips_build_save_scratch(&p, V1, K1); /* VCPU scratch register has pointer to vcpu */ UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]); /* Offset into vcpu->arch */ UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch)); /* * Save the host stack to VCPU, used for exception processing * when we exit from the Guest */ UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); /* Save the kernel gp as well */ UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); /* * Setup status register for running the guest in UM, interrupts * are disabled */ UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); /* load up the new EBASE */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); build_set_exc_base(&p, K0); /* * Now that the new EBASE has been loaded, unset BEV, set * interrupt mask as it was but make sure that timer interrupts * are enabled */ uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64); uasm_i_andi(&p, V0, V0, ST0_IM); uasm_i_or(&p, K0, K0, V0); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); p = kvm_mips_build_enter_guest(p); return p; } /** * kvm_mips_build_enter_guest() - Assemble code to resume guest execution. * @addr: Address to start writing code. * * Assemble the code to resume guest execution. This code is common between the * initial entry into the guest from the host, and returning from the exit * handler back to the guest. * * Returns: Next address after end of written function. */ static void *kvm_mips_build_enter_guest(void *addr) { u32 *p = addr; unsigned int i; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; struct uasm_label __maybe_unused *l = labels; struct uasm_reloc __maybe_unused *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Set Guest EPC */ UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1); UASM_i_MTC0(&p, T0, C0_EPC); /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */ if (cpu_has_ldpte) UASM_i_MFC0(&p, K0, C0_PWBASE); else UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1); /* * Set up KVM GPA pgd. * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): * - call tlbmiss_handler_setup_pgd(mm->pgd) * - write mm->pgd into CP0_PWBase * * We keep S0 pointing at struct kvm so we can load the ASID below. */ UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) - (int)offsetof(struct kvm_vcpu, arch), K1); UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0); UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); uasm_i_jalr(&p, RA, T9); /* delay slot */ if (cpu_has_htw) UASM_i_MTC0(&p, A0, C0_PWBASE); else uasm_i_nop(&p); /* Set GM bit to setup eret to VZ guest context */ uasm_i_addiu(&p, V1, ZERO, 1); uasm_i_mfc0(&p, K0, C0_GUESTCTL0); uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1); uasm_i_mtc0(&p, K0, C0_GUESTCTL0); if (cpu_has_guestid) { /* * Set root mode GuestID, so that root TLB refill handler can * use the correct GuestID in the root TLB. */ /* Get current GuestID */ uasm_i_mfc0(&p, T0, C0_GUESTCTL1); /* Set GuestCtl1.RID = GuestCtl1.ID */ uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT, MIPS_GCTL1_ID_WIDTH); uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT, MIPS_GCTL1_RID_WIDTH); uasm_i_mtc0(&p, T0, C0_GUESTCTL1); /* GuestID handles dealiasing so we don't need to touch ASID */ goto skip_asid_restore; } /* Root ASID Dealias (RAD) */ /* Save host ASID */ UASM_i_MFC0(&p, K0, C0_ENTRYHI); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), K1); /* Set the root ASID for the Guest */ UASM_i_ADDIU(&p, T1, S0, offsetof(struct kvm, arch.gpa_mm.context.asid)); /* t1: contains the base of the ASID array, need to get the cpu id */ /* smp_processor_id */ uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP); /* index the ASID array */ uasm_i_sll(&p, T2, T2, ilog2(sizeof(long))); UASM_i_ADDU(&p, T3, T1, T2); UASM_i_LW(&p, K0, 0, T3); #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE /* * reuse ASID array offset * cpuinfo_mips is a multiple of sizeof(long) */ uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long)); uasm_i_mul(&p, T2, T2, T3); UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask); UASM_i_ADDU(&p, AT, AT, T2); UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT); uasm_i_and(&p, K0, K0, T2); #else uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID); #endif /* Set up KVM VZ root ASID (!guestid) */ uasm_i_mtc0(&p, K0, C0_ENTRYHI); skip_asid_restore: uasm_i_ehb(&p); /* Disable RDHWR access */ uasm_i_mtc0(&p, ZERO, C0_HWRENA); /* load the guest context from VCPU and return */ for (i = 1; i < 32; ++i) { /* Guest k0/k1 loaded later */ if (i == K0 || i == K1) continue; UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); } #ifndef CONFIG_CPU_MIPSR6 /* Restore hi/lo */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1); uasm_i_mthi(&p, K0); UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1); uasm_i_mtlo(&p, K0); #endif /* Restore the guest's k0/k1 registers */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); /* Jump to guest */ uasm_i_eret(&p); uasm_resolve_relocs(relocs, labels); return p; } /** * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler. * @addr: Address to start writing code. * @handler: Address of common handler (within range of @addr). * * Assemble TLB refill exception fast path handler for guest execution. * * Returns: Next address after end of written function. */ void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler) { u32 *p = addr; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; #ifndef CONFIG_CPU_LOONGSON64 struct uasm_label *l = labels; struct uasm_reloc *r = relocs; #endif memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Save guest k1 into scratch register */ UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); /* Get the VCPU pointer from the VCPU scratch register */ UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); /* Save guest k0 into VCPU structure */ UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); /* * Some of the common tlbex code uses current_cpu_type(). For KVM we * assume symmetry and just disable preemption to silence the warning. */ preempt_disable(); #ifdef CONFIG_CPU_LOONGSON64 UASM_i_MFC0(&p, K1, C0_PGD); uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ #ifndef __PAGETABLE_PMD_FOLDED uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ #endif uasm_i_ldpte(&p, K1, 0); /* even */ uasm_i_ldpte(&p, K1, 1); /* odd */ uasm_i_tlbwr(&p); #else /* * Now for the actual refill bit. A lot of this can be common with the * Linux TLB refill handler, however we don't need to handle so many * cases. We only need to handle user mode refills, and user mode runs * with 32-bit addressing. * * Therefore the branch to label_vmalloc generated by build_get_pmde64() * that isn't resolved should never actually get taken and is harmless * to leave in place for now. */ #ifdef CONFIG_64BIT build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ #else build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ #endif /* we don't support huge pages yet */ build_get_ptep(&p, K0, K1); build_update_entries(&p, K0, K1); build_tlb_write_entry(&p, &l, &r, tlb_random); #endif preempt_enable(); /* Get the VCPU pointer from the VCPU scratch register again */ UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); /* Restore the guest's k0/k1 registers */ UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); uasm_i_ehb(&p); UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); /* Jump to guest */ uasm_i_eret(&p); return p; } /** * kvm_mips_build_exception() - Assemble first level guest exception handler. * @addr: Address to start writing code. * @handler: Address of common handler (within range of @addr). * * Assemble exception vector code for guest execution. The generated vector will * branch to the common exception handler generated by kvm_mips_build_exit(). * * Returns: Next address after end of written function. */ void *kvm_mips_build_exception(void *addr, void *handler) { u32 *p = addr; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; struct uasm_label *l = labels; struct uasm_reloc *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Save guest k1 into scratch register */ UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); /* Get the VCPU pointer from the VCPU scratch register */ UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); /* Save guest k0 into VCPU structure */ UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); /* Branch to the common handler */ uasm_il_b(&p, &r, label_exit_common); uasm_i_nop(&p); uasm_l_exit_common(&l, handler); uasm_resolve_relocs(relocs, labels); return p; } /** * kvm_mips_build_exit() - Assemble common guest exit handler. * @addr: Address to start writing code. * * Assemble the generic guest exit handling code. This is called by the * exception vectors (generated by kvm_mips_build_exception()), and calls * kvm_mips_handle_exit(), then either resumes the guest or returns to the host * depending on the return value. * * Returns: Next address after end of written function. */ void *kvm_mips_build_exit(void *addr) { u32 *p = addr; unsigned int i; struct uasm_label labels[3]; struct uasm_reloc relocs[3]; struct uasm_label *l = labels; struct uasm_reloc *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* * Generic Guest exception handler. We end up here when the guest * does something that causes a trap to kernel mode. * * Both k0/k1 registers will have already been saved (k0 into the vcpu * structure, and k1 into the scratch_tmp register). * * The k1 register will already contain the kvm_vcpu_arch pointer. */ /* Start saving Guest context to VCPU */ for (i = 0; i < 32; ++i) { /* Guest k0/k1 saved later */ if (i == K0 || i == K1) continue; UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); } #ifndef CONFIG_CPU_MIPSR6 /* We need to save hi/lo and restore them on the way out */ uasm_i_mfhi(&p, T0); UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1); uasm_i_mflo(&p, T0); UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1); #endif /* Finally save guest k1 to VCPU */ uasm_i_ehb(&p); UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]); UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); /* Now that context has been saved, we can use other registers */ /* Restore vcpu */ UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); /* * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process * the exception */ UASM_i_MFC0(&p, K0, C0_EPC); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1); UASM_i_MFC0(&p, K0, C0_BADVADDR); UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr), K1); uasm_i_mfc0(&p, K0, C0_CAUSE); uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1); if (cpu_has_badinstr) { uasm_i_mfc0(&p, K0, C0_BADINSTR); uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badinstr), K1); } if (cpu_has_badinstrp) { uasm_i_mfc0(&p, K0, C0_BADINSTRP); uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badinstrp), K1); } /* Now restore the host state just enough to run the handlers */ /* Switch EBASE to the one used by Linux */ /* load up the host EBASE */ uasm_i_mfc0(&p, V0, C0_STATUS); uasm_i_lui(&p, AT, ST0_BEV >> 16); uasm_i_or(&p, K0, V0, AT); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); UASM_i_LA_mostly(&p, K0, (long)&ebase); UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0); build_set_exc_base(&p, K0); if (raw_cpu_has_fpu) { /* * If FPU is enabled, save FCR31 and clear it so that later * ctc1's don't trigger FPE for pending exceptions. */ uasm_i_lui(&p, AT, ST0_CU1 >> 16); uasm_i_and(&p, V1, V0, AT); uasm_il_beqz(&p, &r, V1, label_fpu_1); uasm_i_nop(&p); uasm_i_cfc1(&p, T0, 31); uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31), K1); uasm_i_ctc1(&p, ZERO, 31); uasm_l_fpu_1(&l, p); } if (cpu_has_msa) { /* * If MSA is enabled, save MSACSR and clear it so that later * instructions don't trigger MSAFPE for pending exceptions. */ uasm_i_mfc0(&p, T0, C0_CONFIG5); uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */ uasm_il_beqz(&p, &r, T0, label_msa_1); uasm_i_nop(&p); uasm_i_cfcmsa(&p, T0, MSA_CSR); uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr), K1); uasm_i_ctcmsa(&p, MSA_CSR, ZERO); uasm_l_msa_1(&l, p); } /* Restore host ASID */ if (!cpu_has_guestid) { UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), K1); UASM_i_MTC0(&p, K0, C0_ENTRYHI); } /* * Set up normal Linux process pgd. * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): * - call tlbmiss_handler_setup_pgd(mm->pgd) * - write mm->pgd into CP0_PWBase */ UASM_i_LW(&p, A0, offsetof(struct kvm_vcpu_arch, host_pgd), K1); UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); uasm_i_jalr(&p, RA, T9); /* delay slot */ if (cpu_has_htw) UASM_i_MTC0(&p, A0, C0_PWBASE); else uasm_i_nop(&p); /* Clear GM bit so we don't enter guest mode when EXL is cleared */ uasm_i_mfc0(&p, K0, C0_GUESTCTL0); uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1); uasm_i_mtc0(&p, K0, C0_GUESTCTL0); /* Save GuestCtl0 so we can access GExcCode after CPU migration */ uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1); if (cpu_has_guestid) { /* * Clear root mode GuestID, so that root TLB operations use the * root GuestID in the root TLB. */ uasm_i_mfc0(&p, T0, C0_GUESTCTL1); /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */ uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT, MIPS_GCTL1_RID_WIDTH); uasm_i_mtc0(&p, T0, C0_GUESTCTL1); } /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */ uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE)); uasm_i_and(&p, V0, V0, AT); uasm_i_lui(&p, AT, ST0_CU0 >> 16); uasm_i_or(&p, V0, V0, AT); #ifdef CONFIG_64BIT uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX); #endif uasm_i_mtc0(&p, V0, C0_STATUS); uasm_i_ehb(&p); /* Load up host GP */ UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); /* Need a stack before we can jump to "C" */ UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); /* Saved host state */ UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs)); /* * XXXKYMA do we need to load the host ASID, maybe not because the * kernel entries are marked GLOBAL, need to verify */ /* Restore host scratch registers, as we'll have clobbered them */ kvm_mips_build_restore_scratch(&p, K0, SP); /* Restore RDHWR access */ UASM_i_LA_mostly(&p, K0, (long)&hwrena); uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); uasm_i_mtc0(&p, K0, C0_HWRENA); /* Jump to handler */ /* * XXXKYMA: not sure if this is safe, how large is the stack?? * Now jump to the kvm_mips_handle_exit() to see if we can deal * with this in the kernel */ uasm_i_move(&p, A0, S0); UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit); uasm_i_jalr(&p, RA, T9); UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ); uasm_resolve_relocs(relocs, labels); p = kvm_mips_build_ret_from_exit(p); return p; } /** * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler. * @addr: Address to start writing code. * * Assemble the code to handle the return from kvm_mips_handle_exit(), either * resuming the guest or returning to the host depending on the return value. * * Returns: Next address after end of written function. */ static void *kvm_mips_build_ret_from_exit(void *addr) { u32 *p = addr; struct uasm_label labels[2]; struct uasm_reloc relocs[2]; struct uasm_label *l = labels; struct uasm_reloc *r = relocs; memset(labels, 0, sizeof(labels)); memset(relocs, 0, sizeof(relocs)); /* Return from handler Make sure interrupts are disabled */ uasm_i_di(&p, ZERO); uasm_i_ehb(&p); /* * XXXKYMA: k0/k1 could have been blown away if we processed * an exception while we were handling the exception from the * guest, reload k1 */ uasm_i_move(&p, K1, S0); UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); /* * Check return value, should tell us if we are returning to the * host (handle I/O etc)or resuming the guest */ uasm_i_andi(&p, T0, V0, RESUME_HOST); uasm_il_bnez(&p, &r, T0, label_return_to_host); uasm_i_nop(&p); p = kvm_mips_build_ret_to_guest(p); uasm_l_return_to_host(&l, p); p = kvm_mips_build_ret_to_host(p); uasm_resolve_relocs(relocs, labels); return p; } /** * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest. * @addr: Address to start writing code. * * Assemble the code to handle return from the guest exit handler * (kvm_mips_handle_exit()) back to the guest. * * Returns: Next address after end of written function. */ static void *kvm_mips_build_ret_to_guest(void *addr) { u32 *p = addr; /* Put the saved pointer to vcpu (s0) back into the scratch register */ UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); /* Load up the Guest EBASE to minimize the window where BEV is set */ UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); /* Switch EBASE back to the one used by KVM */ uasm_i_mfc0(&p, V1, C0_STATUS); uasm_i_lui(&p, AT, ST0_BEV >> 16); uasm_i_or(&p, K0, V1, AT); uasm_i_mtc0(&p, K0, C0_STATUS); uasm_i_ehb(&p); build_set_exc_base(&p, T0); /* Setup status register for running guest in UM */ uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE); UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX)); uasm_i_and(&p, V1, V1, AT); uasm_i_mtc0(&p, V1, C0_STATUS); uasm_i_ehb(&p); p = kvm_mips_build_enter_guest(p); return p; } /** * kvm_mips_build_ret_to_host() - Assemble code to return to the host. * @addr: Address to start writing code. * * Assemble the code to handle return from the guest exit handler * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run * function generated by kvm_mips_build_vcpu_run(). * * Returns: Next address after end of written function. */ static void *kvm_mips_build_ret_to_host(void *addr) { u32 *p = addr; unsigned int i; /* EBASE is already pointing to Linux */ UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1); UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs)); /* * r2/v0 is the return code, shift it down by 2 (arithmetic) * to recover the err code */ uasm_i_sra(&p, K0, V0, 2); uasm_i_move(&p, V0, K0); /* Load context saved on the host stack */ for (i = 16; i < 31; ++i) { if (i == 24) i = 28; UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1); } /* Restore RDHWR access */ UASM_i_LA_mostly(&p, K0, (long)&hwrena); uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); uasm_i_mtc0(&p, K0, C0_HWRENA); /* Restore RA, which is the address we will return to */ UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1); uasm_i_jr(&p, RA); uasm_i_nop(&p); return p; } |