Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | // SPDX-License-Identifier: GPL-2.0-only /* * multiorder.c: Multi-order radix tree entry testing * Copyright (c) 2016 Intel Corporation * Author: Ross Zwisler <ross.zwisler@linux.intel.com> * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> */ #include <linux/radix-tree.h> #include <linux/slab.h> #include <linux/errno.h> #include <pthread.h> #include "test.h" static int item_insert_order(struct xarray *xa, unsigned long index, unsigned order) { XA_STATE_ORDER(xas, xa, index, order); struct item *item = item_create(index, order); do { xas_lock(&xas); xas_store(&xas, item); xas_unlock(&xas); } while (xas_nomem(&xas, GFP_KERNEL)); if (!xas_error(&xas)) return 0; free(item); return xas_error(&xas); } void multiorder_iteration(struct xarray *xa) { XA_STATE(xas, xa, 0); struct item *item; int i, j, err; #define NUM_ENTRIES 11 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; printv(1, "Multiorder iteration test\n"); for (i = 0; i < NUM_ENTRIES; i++) { err = item_insert_order(xa, index[i], order[i]); assert(!err); } for (j = 0; j < 256; j++) { for (i = 0; i < NUM_ENTRIES; i++) if (j <= (index[i] | ((1 << order[i]) - 1))) break; xas_set(&xas, j); xas_for_each(&xas, item, ULONG_MAX) { int height = order[i] / XA_CHUNK_SHIFT; int shift = height * XA_CHUNK_SHIFT; unsigned long mask = (1UL << order[i]) - 1; assert((xas.xa_index | mask) == (index[i] | mask)); assert(xas.xa_node->shift == shift); assert(!radix_tree_is_internal_node(item)); assert((item->index | mask) == (index[i] | mask)); assert(item->order == order[i]); i++; } } item_kill_tree(xa); } void multiorder_tagged_iteration(struct xarray *xa) { XA_STATE(xas, xa, 0); struct item *item; int i, j; #define MT_NUM_ENTRIES 9 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; #define TAG_ENTRIES 7 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; printv(1, "Multiorder tagged iteration test\n"); for (i = 0; i < MT_NUM_ENTRIES; i++) assert(!item_insert_order(xa, index[i], order[i])); assert(!xa_marked(xa, XA_MARK_1)); for (i = 0; i < TAG_ENTRIES; i++) xa_set_mark(xa, tag_index[i], XA_MARK_1); for (j = 0; j < 256; j++) { int k; for (i = 0; i < TAG_ENTRIES; i++) { for (k = i; index[k] < tag_index[i]; k++) ; if (j <= (index[k] | ((1 << order[k]) - 1))) break; } xas_set(&xas, j); xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) { unsigned long mask; for (k = i; index[k] < tag_index[i]; k++) ; mask = (1UL << order[k]) - 1; assert((xas.xa_index | mask) == (tag_index[i] | mask)); assert(!xa_is_internal(item)); assert((item->index | mask) == (tag_index[i] | mask)); assert(item->order == order[k]); i++; } } assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1, XA_MARK_2) == TAG_ENTRIES); for (j = 0; j < 256; j++) { int mask, k; for (i = 0; i < TAG_ENTRIES; i++) { for (k = i; index[k] < tag_index[i]; k++) ; if (j <= (index[k] | ((1 << order[k]) - 1))) break; } xas_set(&xas, j); xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) { for (k = i; index[k] < tag_index[i]; k++) ; mask = (1 << order[k]) - 1; assert((xas.xa_index | mask) == (tag_index[i] | mask)); assert(!xa_is_internal(item)); assert((item->index | mask) == (tag_index[i] | mask)); assert(item->order == order[k]); i++; } } assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1, XA_MARK_0) == TAG_ENTRIES); i = 0; xas_set(&xas, 0); xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) { assert(xas.xa_index == tag_index[i]); i++; } assert(i == TAG_ENTRIES); item_kill_tree(xa); } bool stop_iteration = false; static void *creator_func(void *ptr) { /* 'order' is set up to ensure we have sibling entries */ unsigned int order = RADIX_TREE_MAP_SHIFT - 1; struct radix_tree_root *tree = ptr; int i; for (i = 0; i < 10000; i++) { item_insert_order(tree, 0, order); item_delete_rcu(tree, 0); } stop_iteration = true; return NULL; } static void *iterator_func(void *ptr) { XA_STATE(xas, ptr, 0); struct item *item; while (!stop_iteration) { rcu_read_lock(); xas_for_each(&xas, item, ULONG_MAX) { if (xas_retry(&xas, item)) continue; item_sanity(item, xas.xa_index); } rcu_read_unlock(); } return NULL; } static void multiorder_iteration_race(struct xarray *xa) { const int num_threads = sysconf(_SC_NPROCESSORS_ONLN); pthread_t worker_thread[num_threads]; int i; pthread_create(&worker_thread[0], NULL, &creator_func, xa); for (i = 1; i < num_threads; i++) pthread_create(&worker_thread[i], NULL, &iterator_func, xa); for (i = 0; i < num_threads; i++) pthread_join(worker_thread[i], NULL); item_kill_tree(xa); } static DEFINE_XARRAY(array); void multiorder_checks(void) { multiorder_iteration(&array); multiorder_tagged_iteration(&array); multiorder_iteration_race(&array); radix_tree_cpu_dead(0); } int __weak main(void) { rcu_register_thread(); radix_tree_init(); multiorder_checks(); rcu_unregister_thread(); return 0; } |