Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 | // SPDX-License-Identifier: GPL-2.0-only /* * Broadcom BCM6345 style Level 1 interrupt controller driver * * Copyright (C) 2014 Broadcom Corporation * Copyright 2015 Simon Arlott * * This is based on the BCM7038 (which supports SMP) but with a single * enable register instead of separate mask/set/clear registers. * * The BCM3380 has a similar mask/status register layout, but each pair * of words is at separate locations (and SMP is not supported). * * ENABLE/STATUS words are packed next to each other for each CPU: * * BCM6368: * 0x1000_0020: CPU0_W0_ENABLE * 0x1000_0024: CPU0_W1_ENABLE * 0x1000_0028: CPU0_W0_STATUS IRQs 31-63 * 0x1000_002c: CPU0_W1_STATUS IRQs 0-31 * 0x1000_0030: CPU1_W0_ENABLE * 0x1000_0034: CPU1_W1_ENABLE * 0x1000_0038: CPU1_W0_STATUS IRQs 31-63 * 0x1000_003c: CPU1_W1_STATUS IRQs 0-31 * * BCM63168: * 0x1000_0020: CPU0_W0_ENABLE * 0x1000_0024: CPU0_W1_ENABLE * 0x1000_0028: CPU0_W2_ENABLE * 0x1000_002c: CPU0_W3_ENABLE * 0x1000_0030: CPU0_W0_STATUS IRQs 96-127 * 0x1000_0034: CPU0_W1_STATUS IRQs 64-95 * 0x1000_0038: CPU0_W2_STATUS IRQs 32-63 * 0x1000_003c: CPU0_W3_STATUS IRQs 0-31 * 0x1000_0040: CPU1_W0_ENABLE * 0x1000_0044: CPU1_W1_ENABLE * 0x1000_0048: CPU1_W2_ENABLE * 0x1000_004c: CPU1_W3_ENABLE * 0x1000_0050: CPU1_W0_STATUS IRQs 96-127 * 0x1000_0054: CPU1_W1_STATUS IRQs 64-95 * 0x1000_0058: CPU1_W2_STATUS IRQs 32-63 * 0x1000_005c: CPU1_W3_STATUS IRQs 0-31 * * IRQs are numbered in CPU native endian order * (which is big-endian in these examples) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/bitops.h> #include <linux/cpumask.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/types.h> #include <linux/irqchip.h> #include <linux/irqchip/chained_irq.h> #define IRQS_PER_WORD 32 #define REG_BYTES_PER_IRQ_WORD (sizeof(u32) * 2) struct bcm6345_l1_cpu; struct bcm6345_l1_chip { raw_spinlock_t lock; unsigned int n_words; struct irq_domain *domain; struct cpumask cpumask; struct bcm6345_l1_cpu *cpus[NR_CPUS]; }; struct bcm6345_l1_cpu { void __iomem *map_base; unsigned int parent_irq; u32 enable_cache[]; }; static inline unsigned int reg_enable(struct bcm6345_l1_chip *intc, unsigned int word) { #ifdef __BIG_ENDIAN return (1 * intc->n_words - word - 1) * sizeof(u32); #else return (0 * intc->n_words + word) * sizeof(u32); #endif } static inline unsigned int reg_status(struct bcm6345_l1_chip *intc, unsigned int word) { #ifdef __BIG_ENDIAN return (2 * intc->n_words - word - 1) * sizeof(u32); #else return (1 * intc->n_words + word) * sizeof(u32); #endif } static inline unsigned int cpu_for_irq(struct bcm6345_l1_chip *intc, struct irq_data *d) { return cpumask_first_and(&intc->cpumask, irq_data_get_affinity_mask(d)); } static void bcm6345_l1_irq_handle(struct irq_desc *desc) { struct bcm6345_l1_chip *intc = irq_desc_get_handler_data(desc); struct bcm6345_l1_cpu *cpu; struct irq_chip *chip = irq_desc_get_chip(desc); unsigned int idx; #ifdef CONFIG_SMP cpu = intc->cpus[cpu_logical_map(smp_processor_id())]; #else cpu = intc->cpus[0]; #endif chained_irq_enter(chip, desc); for (idx = 0; idx < intc->n_words; idx++) { int base = idx * IRQS_PER_WORD; unsigned long pending; irq_hw_number_t hwirq; pending = __raw_readl(cpu->map_base + reg_status(intc, idx)); pending &= __raw_readl(cpu->map_base + reg_enable(intc, idx)); for_each_set_bit(hwirq, &pending, IRQS_PER_WORD) { if (generic_handle_domain_irq(intc->domain, base + hwirq)) spurious_interrupt(); } } chained_irq_exit(chip, desc); } static inline void __bcm6345_l1_unmask(struct irq_data *d) { struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); u32 word = d->hwirq / IRQS_PER_WORD; u32 mask = BIT(d->hwirq % IRQS_PER_WORD); unsigned int cpu_idx = cpu_for_irq(intc, d); intc->cpus[cpu_idx]->enable_cache[word] |= mask; __raw_writel(intc->cpus[cpu_idx]->enable_cache[word], intc->cpus[cpu_idx]->map_base + reg_enable(intc, word)); } static inline void __bcm6345_l1_mask(struct irq_data *d) { struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); u32 word = d->hwirq / IRQS_PER_WORD; u32 mask = BIT(d->hwirq % IRQS_PER_WORD); unsigned int cpu_idx = cpu_for_irq(intc, d); intc->cpus[cpu_idx]->enable_cache[word] &= ~mask; __raw_writel(intc->cpus[cpu_idx]->enable_cache[word], intc->cpus[cpu_idx]->map_base + reg_enable(intc, word)); } static void bcm6345_l1_unmask(struct irq_data *d) { struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); unsigned long flags; raw_spin_lock_irqsave(&intc->lock, flags); __bcm6345_l1_unmask(d); raw_spin_unlock_irqrestore(&intc->lock, flags); } static void bcm6345_l1_mask(struct irq_data *d) { struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); unsigned long flags; raw_spin_lock_irqsave(&intc->lock, flags); __bcm6345_l1_mask(d); raw_spin_unlock_irqrestore(&intc->lock, flags); } static int bcm6345_l1_set_affinity(struct irq_data *d, const struct cpumask *dest, bool force) { struct bcm6345_l1_chip *intc = irq_data_get_irq_chip_data(d); u32 word = d->hwirq / IRQS_PER_WORD; u32 mask = BIT(d->hwirq % IRQS_PER_WORD); unsigned int old_cpu = cpu_for_irq(intc, d); unsigned int new_cpu; struct cpumask valid; unsigned long flags; bool enabled; if (!cpumask_and(&valid, &intc->cpumask, dest)) return -EINVAL; new_cpu = cpumask_any_and(&valid, cpu_online_mask); if (new_cpu >= nr_cpu_ids) return -EINVAL; dest = cpumask_of(new_cpu); raw_spin_lock_irqsave(&intc->lock, flags); if (old_cpu != new_cpu) { enabled = intc->cpus[old_cpu]->enable_cache[word] & mask; if (enabled) __bcm6345_l1_mask(d); irq_data_update_affinity(d, dest); if (enabled) __bcm6345_l1_unmask(d); } else { irq_data_update_affinity(d, dest); } raw_spin_unlock_irqrestore(&intc->lock, flags); irq_data_update_effective_affinity(d, cpumask_of(new_cpu)); return IRQ_SET_MASK_OK_NOCOPY; } static int __init bcm6345_l1_init_one(struct device_node *dn, unsigned int idx, struct bcm6345_l1_chip *intc) { struct resource res; resource_size_t sz; struct bcm6345_l1_cpu *cpu; unsigned int i, n_words; if (of_address_to_resource(dn, idx, &res)) return -EINVAL; sz = resource_size(&res); n_words = sz / REG_BYTES_PER_IRQ_WORD; if (!intc->n_words) intc->n_words = n_words; else if (intc->n_words != n_words) return -EINVAL; cpu = intc->cpus[idx] = kzalloc(sizeof(*cpu) + n_words * sizeof(u32), GFP_KERNEL); if (!cpu) return -ENOMEM; cpu->map_base = ioremap(res.start, sz); if (!cpu->map_base) return -ENOMEM; for (i = 0; i < n_words; i++) { cpu->enable_cache[i] = 0; __raw_writel(0, cpu->map_base + reg_enable(intc, i)); } cpu->parent_irq = irq_of_parse_and_map(dn, idx); if (!cpu->parent_irq) { pr_err("failed to map parent interrupt %d\n", cpu->parent_irq); return -EINVAL; } irq_set_chained_handler_and_data(cpu->parent_irq, bcm6345_l1_irq_handle, intc); return 0; } static struct irq_chip bcm6345_l1_irq_chip = { .name = "bcm6345-l1", .irq_mask = bcm6345_l1_mask, .irq_unmask = bcm6345_l1_unmask, .irq_set_affinity = bcm6345_l1_set_affinity, }; static int bcm6345_l1_map(struct irq_domain *d, unsigned int virq, irq_hw_number_t hw_irq) { irq_set_chip_and_handler(virq, &bcm6345_l1_irq_chip, handle_percpu_irq); irq_set_chip_data(virq, d->host_data); irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq))); return 0; } static const struct irq_domain_ops bcm6345_l1_domain_ops = { .xlate = irq_domain_xlate_onecell, .map = bcm6345_l1_map, }; static int __init bcm6345_l1_of_init(struct device_node *dn, struct device_node *parent) { struct bcm6345_l1_chip *intc; unsigned int idx; int ret; intc = kzalloc(sizeof(*intc), GFP_KERNEL); if (!intc) return -ENOMEM; for_each_possible_cpu(idx) { ret = bcm6345_l1_init_one(dn, idx, intc); if (ret) pr_err("failed to init intc L1 for cpu %d: %d\n", idx, ret); else cpumask_set_cpu(idx, &intc->cpumask); } if (cpumask_empty(&intc->cpumask)) { ret = -ENODEV; goto out_free; } raw_spin_lock_init(&intc->lock); intc->domain = irq_domain_add_linear(dn, IRQS_PER_WORD * intc->n_words, &bcm6345_l1_domain_ops, intc); if (!intc->domain) { ret = -ENOMEM; goto out_unmap; } pr_info("registered BCM6345 L1 intc (IRQs: %d)\n", IRQS_PER_WORD * intc->n_words); for_each_cpu(idx, &intc->cpumask) { struct bcm6345_l1_cpu *cpu = intc->cpus[idx]; pr_info(" CPU%u at MMIO 0x%p (irq = %d)\n", idx, cpu->map_base, cpu->parent_irq); } return 0; out_unmap: for_each_possible_cpu(idx) { struct bcm6345_l1_cpu *cpu = intc->cpus[idx]; if (cpu) { if (cpu->map_base) iounmap(cpu->map_base); kfree(cpu); } } out_free: kfree(intc); return ret; } IRQCHIP_DECLARE(bcm6345_l1, "brcm,bcm6345-l1-intc", bcm6345_l1_of_init); |